
SCREENID: Enhancing QRCode Security by
Fingerprinting Screens

Abstract—Quick response (QR) codes have been widely used in
mobile applications due to its convenience and the pervasive built-
in cameras on smartphones. Recently, however, attacks against
QR codes have been reported that attackers can capture a
QR code of the victim and replay it to achieve a fraudulent
transaction or intercept private information, just before the
original QR code is scanned. In this study, we enhance the
security of a QR code by identifying its authenticity. We propose
SCREENID, which embeds a QR code with information of the
screen which displays it, thereby the QR code can reveal whether
it is reproduced by an adversary or not. In SCREENID, PWM fre-
quency of screens is exploited as the unique screen fingerprint. To
improve the estimation accuracy of PWM frequency, SCREENID
incorporates a model for the interaction between the camera
and screen in the temporal and spatial domains. Extensive ex-
periments demonstrate that SCREENID can differentiate screens
of different models, types, and manufacturers, thus improve the
security of QR codes.

Index Terms—screen-camera communication; secure QR code;

I. INTRODUCTION

Quick response (QR) codes are barcodes comprising white

and black blocks. In the past years, with the pervasive built-in

cameras on smartphones, QR codes have been widely adopted

in mobile applications such as communication, payment, etc.

Especially, for mobile payment scenarios, the QR code system

(hereafter we name a QR code system as QRCode) is almost a

standard module for service providers such as AliPay, WeChat,

PayPal, etc [1], [38]. Users just need to show their QR

codes on smartphones for a quick transaction, which provides

convenient and friendly experience.

The QRCode system works in a straightforward way. As

shown in the flowchart in Fig. 1, payment transactions begin

with the generation of a legal QR code, which includes the ID

of the user in the application, e.g., the AliPay account, a time-

stamp, and the secret transaction information in the form of

an encrypted token. The user then presents the QR code to the

cashier to have it scanned into the transaction system, together

with other transaction information such as total amount and

currency type. On the server side, the merchant extracts the

token from QR code, obtains the user ID from the token

and then accesses the database maintained by the company

to retrieve the stored secret of the payer. This secret is then

converted into a new token for verification. As long as the

token is deemed valid, the transaction proceeds.

However, the above-mentioned transaction process is far

from secure. Recently, researchers have reported that a QR-

Code system is susceptible to the Synchronized Token Lifting

and Spending (STLS) attack and other similar attacks [2]. In

this attack, the adversary first acquires an image of the QR
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Fig. 1. A flowchart of a typical QRCode system for mobile transaction. Note
that an adversary can capture the victim’s QR code and then replay it for a
fraudulent transaction.

code displayed on the victim’s device [18], when the victim

is showing the QR code to the cashier, for example. Then the

adversary replays the stolen QR code for another transaction,

which we call fraudulent transaction. To ensure the success of

such an attack, the adversary should also finish the transaction

before the legitimate scanning process from the cashier.

To against the STLS attack, researchers have proposed a

lot of solutions. Most existing protection schemes aim at

safeguarding the QRCode system by inserting codewords [6],

[7], [23] or concealing the original QR codes using visually

cryptographic techniques [5], [13], [24], [29], [37], [39].

Unfortunately, attackers can still succeed in replaying the

stolen QR code as they do not need to decrypt the message

embedded in the QR code.

In this paper, we sought to enhance the security of the

QRCode system by identifying the authenticity of a QR code.

We propose SCREENID, which embeds a QR code with infor-

mation of the screen that is displaying it, thereby the generated

QR code can reveal whether the screen is corresponding to it.

In SCREENID, we utilize the pulse width modulation (PWM)

frequency of screens as the unique screen fingerprint. From

our experiments, it can hardly find any two smartphones with

the same PWM frequency. PWM frequency makes a good

candidate for screen fingerprint for the reason that it is adjusted

to different value by screen manufacturers. Even for the same

manufacture, the PWM frequency shows variances due to the

variations in the manufacturing processes. In Section IV, we

show that PWM frequencies are different even for phones of

the same model. Although the results cannot fully guarantee

the security of QRCode system, the probability that any two

mobile phones have the same frequency is negligible, therefore

SCREENID can successfully enhance the security of QRCode

system.



On the receiver side, e.g., the camera in a cashier, the PWM

frequency is measured by the rolling shutter effect observed on

the cashier’s camera. The QR code is legal and the transaction

proceeds only if the PWM frequency embedded in the QR

code and the one measured from the screen are closely match.

In realizing the SCREENID, we overcome several chal-

lenges. First, the interaction between screen and camera

involves many influencing factors, such as PWM dimming

and screen refresh rate, etc. Obtaining an accurate frequency

estimation requires that the interactions among these factors

be modeled in the temporal as well as the spatial domains

(Sec. VI). Second, it was necessary to compensate for varia-

tions of distance and angle between the display device and the

scanning device, e.g., a camera (Sec. VII-F). Third, we found

that the differences in PWM frequency among smartphones

were really small (e.g., 0.1Hz), particularly when dealing with

smartphones of the same model. Thus, we need to increase

the frequency resolution, while minimizing the number of

captured images (Sec. VII-G).

We verified the efficacy of a SCREENID prototype using 50
screensunder a variety of camera settings and environmental

conditions. The usability of the proposed system was also

verified in experiments involving ten participants of various

ages. We summarize the contribution of this paper as follows:

• We demonstrated the feasibility of using PWM frequency

of screens for fingerprint, and the fingerprint can be

embedded in to a QR code to check its authenticity.

From our dataset, 99.3% pairwise frequency differences

of screens are larger than 0.1Hz.

• We proposed SCREENID, which incurs no additional

hardware for the QRCode system and has no require-

ments for user behavior. SCREENID can be implemented

via a simple software update.

• We proposed to model the interaction between the camera

and the screen in both temporal and spatial domains and

achieved high estimation accuracy of PWM frequency,

i.e., within 0.03Hz.

• We conducted exhaustive experiments and demonstrated

the efficacy of the SCREENID system under a variety of

operating conditions. The evaluation shows the identifi-

able success rate (i.e. True Positive Rate) is above 94.3%
and the wrongly accepted rate (i.e. False Positive Rate)

against attack attempts is below 0.8%.

II. RELATED WORK

A. Visible Light Communication

Many works exploited the interaction between the light and

camera. The visual microphone [10] used the rolling shutter

effect to measure the vibration of objects to reconstruct the

speech. Danakis et al. [9] exploited the rolling shutter effect to

increase data rates in light-to-camera communications. LiTel-

l [40], iLAMP [44], and Pulsar [41] have applied visible light

communication to indoor localization based on frequencies

specific to individual light sources. LiShield [43] uses the

flickering of smart LEDs to protect visual privacy.

Our work also relies on the rolling shutter effect to capture

the light frequency. Different from previous works which dealt

with a single light source (e.g., a light bulb or a LCD screen),

one of the challenges we faced is that many light sources (i.e.,

many pixels on OLED screen) flickering asynchronously at a

given frequency. Obtaining accurate frequency estimation re-

quires modeling interactions in temporal and spatial domains.

B. Visual Cryptographic Security

Most previous studies have focused on the encryption

of authentication codes [6], [7], [22], [23] directly within

barcodes. Chen [6] embedded authentication data including

codewords and signatures within QR code. Nonetheless, even

those researchers concede that their systems are vulnerable to

Replay and STLS attacks [2] without hardware fingerprint. To

avoid STLS attacks, POSAUTH [2] requires double scanning

which changes users’ habits. Zhou et al. [42] utilize various

brightness pixels as hardware fingerprint, but is restrict with

completely dark environment and pixel aging problem.

Visual cryptography (VC) techniques [30] have also been

developed to ensure that messages remain concealed. Essen-

tially, a secret image is embedded within shared images aimed

at camouflaging the hidden data, which can be revealed only

through the stacking of multiple shared images or capturing

with a specific approach [5], [13], [24], [29], [37], [39]. mQR-

code [29] utilizes moire patterns to encrypt the original QR

code, thereby making the information impervious to extraction

unless viewed from a specific position. Nonetheless, those

methods necessitate the exchange of key images with a server

or restrict the user to a pre-determined position to recover the

original QR code.

Unlike the methods mentioned above, our approach utilizes

hardware fingerprint to avoid STLS attacks, which does not

require additional equipment and allows the user complete

freedom in the use of their device.

III. BACKGROUND

A. Pulse Width Modulation (PWM) Dimming Control

Pulse Width Modulation (PWM) dimming [3] is a common

technique which adjusts screen brightness by digital encoding

an analog signal to appear for a given period of time, wherein

the power is either fully on or fully off. Essentially, the screen

brightness is adjusted by regulating the on-time (TON ) in each

cycle (Tpwm) [35] as shown in Fig. 2. Since human eyes are

insensitive to changes of high frequency, we do not notice

the flickering, but rather perceive a difference in brightness.

Essentially, the screen appears brighter when the on:off ratio

is larger.

PWM dimming has several advantages. PWM dimming

does not impose chromatographic shifts, as the current is

always equal to the full-amplitude current Imax or 0. PWM

also permits high dimming resolution over a wide range of

values. This has led to the widespread adoption of PWM

dimming for OLED screens and some LCD screens. Note that

it is rapidly gaining popularity for mobile devices.



Fig. 2. An illustration of PWM dimming
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Fig. 3. Sampling performed by camera sensors. Some of the rows sample
during the PWM on-time, and others sample during the off-time, respectively
producing black (darker) and white (lighter) stripes in the captured image.

B. Rolling Shutter Camera

Complementary metal-oxide semiconductor (CMOS) tech-

nology is widely used to fabricate the cameras used in s-

martphones. The sequential sampling by different rows in the

camera sensor is referred to as a rolling shutter [21]. The

latency between the start of each exposure in each row is

denoted by ΔC . Note that ΔC remains a constant regardless

of the ISO and exposure time and whether the sensor is used

to capture a still image or video segment. The time during

which one frame is captured is denoted by Tf . Note that there

is a time gap between two consecutive frames.

When using a rolling shutter sensor to capture an image, the

light intensity indicates the total number of photons received

throughout the duration of the exposure. Fig. 3 shows the black

(darker) and white (lighter) stripes created by the sensor rows,

while recording an image in which PWM signals periodically

turn the screen on and off. Examples of this phenomenon

are shown in Fig. 6. SCREENID extracts PWM frequency by

modeling the stripes produced by the flickering in terms of

communication between screen and camera. Details pertaining

to the modeling of the stripes and their use in computing the

PWM frequency are presented in Section VI.

IV. PRELIMINARY STUDY

If PWM dimming frequency is to be used as a feature

by which to identify screens, then we must first verify its

uniqueness and stability.

A. Uniqueness of PWM Frequency

We first conducted a preliminary study to assess the u-

niqueness of PWM frequencies across screens from different

and the same models.We used a light sensor ADPD2212 [11]

sampling at 80kHz to measure the PWM frequencies of 50
phone screens. We crawled 300 screen benchmarks collected

by NotebookCheck [26] (covering mainstream smartphones

from 2016 to 2019). Fig. 4(a) illustrates the distribution of

PWM frequencies among smartphone screens. We can see

that 97% of the PWM frequencies were below 10kHz and

68.3% were below 2kHz. Note that most current smartphones

(a) PWM frequencies. (b) Pairwise PWM frequency differ-
ences.

Fig. 4. CDF of PWM frequencies and pairwise differences of 300 screens
reported in NotebookCheck [26] and 50 screens (30 are of the same model)
we collected.

(a) Time. (b) Distance.
Fig. 5. We measure the PWM frequencies of 8 screens of the same model
across days and at various distances to show its stability.

support video capture at 1920 × 1080 using a frame rate

of 30fps. This means that it should be possible to achieve

sampling rates of at least 32.4kHz, which is far beyond the

Nyquist sampling rate (> 2× 10kHz).

Fig. 4(b) shows the CDF of the pairwise differences in

PWM frequency among screens. Note that the frequency

resolution in the NotebookCheck dataset is 0.1Hz so it

cannot distingush screens using a close PWM frequency. In

our dataset, the frequency resolution is 0.01Hz. We can

see that among all screens and screens of the same model,

95% pairwise differences are larger than 1.1Hz and 0.18Hz,

respectively. The results revealed that a frequency resolution

of 0.1Hz should be sufficient to differentiate among 99.3%
screens.

B. Stability of PWM Frequency

We also assessed the uniformity of PWM frequencies under

various conditions. Fig. 5 shows the PWM frequencies of

8 screens (Samsung S7 [12]) of the same model measured

in various days and from various distances. The variation in

PWM frequency was at most 0.01Hz which implies the PWM

frequency is stable.

V. THREAT MODEL

In this paper, we aim to enhance the security of a QR code

by embedding the screen fingerprint into the displayed QR

code. An adversary may destroy the security by launching a

STLS attack as following:

An adversary can intercept a QR code without the awareness

of the victim during a transaction, for example. Then the

stolen QR code can be replayed by the attacker to achieve

a successful fraudulent transaction. The whole replay attack

process should be finished before the token expires. The

attackers may interrupt or delay the legitimate progress for

attack by using some social-engineering methods,e.g., talking

to the victim or the cashier [2], [20], [27].

We make the following assumptions on the adversary.



(a) lcd screen (20cm) (b) oled screen (5cm) (c) lcd screen (40cm) (d) oled screen (10cm) (e) lcd screen (90°) (f) oled screen (90°)

Fig. 6. Images of LCD and OLED screens captured using a camera. The position of the camera was fixed, while the position and direction of the screens
was varied. The stripes in the LCD screen remained the same in all cases, whereas they varied in the OLED screen in terms of width and angle.

• No access to the victim device. We consider the ad-

versary can physically obtain the QR code displayed on

the victim device from a certain distance. For example,

she may capture the QR code using a smartphone or a

dedicated camera present at the payment scene.

• Malware attack. We assume that the adversary can

infect victim’s phone with a malicious app, which does

not have system privileges but can screenshot or take

camera permissions to obtain QR code. For instance, the

reflection of QR code on the glass of POS scanner may

be sniffed by the malicious app using front camera [2].

• No limitation to software and hardware. The adversary

may utilize state-of-the-art image photographing, record-

ing and synthesis software techniques. She can also utilize

any devices such as high-quality digital cameras and high-

speed networks for a replay attack.

VI. MEASURING PWM FREQUENCY USING A CAMERA

In this section, we examine the process of measuring

PWM frequency using rolling shutter effect. Note that our

use of the rolling shutter for frequency measurement must

contend with many light sources flickering asynchronously. We

addressed this issue by modeling the screen-camera interaction

in temporal as well as spatial domain.

A. PWM Dimming of LCD and OLED

LCD and OLED screens both use PWM dimming control;

however, the actual dimming methods differ. LCD screens

use a single backlight, such that the screen can be regarded

as a single light source flickering at its PWM frequency.

Figs. 6(a)(c)(e) show the black and white bands caused by

the interaction between LCD screen flicker and the rolling

shutter. Note the lack of variation in the width and angle of

the bands despite variations in the distance and angle between

the camera and screen. This indicates the estimates of flicker

frequency vary only as a function of rolling shutter speed.

By contrast, the bands in Figs. 6(b)(d)(f) from an OLED

screen varied in terms of width and angle, depending on the

position of the screen. This can be attributed to the fact that

each pixel in an OLED screen is controlled by an LED light

source and the PWM cycle of each row is asynchronous. As

shown in Fig. 7, the OLED pixels are grouped into rows, the

flickering of which is delayed by latency ΔS from the previous

row. Note that PWM latency ΔS is kept constant among rows

in order to prevent fluctuations1 in current. [14]

1A pixel requires a larger current during its PWM duty cycle. By introduc-
ing a phase latency between rows, the total current required by the all pixels
remain more stable across time.

B. Using a Camera for Sampling

The fact that the brightness of OLED screens varies as a

function of time and space means that the rolling shutter effect

can be viewed as a process of sampling in the temporal and

spatial domains. PWM dimming control produces square wave

signals. Since we are primarily interested in frequency fpwm,

without a loss of generality, a sinusoidal wave can be used to

describe the PWM signals we are interested in, as follows:

T (xs, t) = cos(2πfpwm(t+ xsΔS) + θ) (1)

where T (xs, t) denotes the signal emitted from the xth
s row

of the screen at time t. xs ranges from 0, 1, ..., Xs − 1 where

Xs indicates the number of rows across the entire screen. θ
denotes the initial phase of the signal in the first row.

When using a rolling shutter camera to capture an image

from an OLED screen, the screen with Xs rows is mapped to

Xs→c rows in the captured picture (as shown in Fig. 8). In

other words, we assume that M rows on the camera sensor

capture one row from the screen, where the projection ratio

M can be denoted as M = Xs→c/Xs

Fig. 7 presents an example of image sampling in which the

screen and camera are placed in parallel to induce flicker and

sampling is performed sequentially from top to bottom. Note

that we later remove this assumption and model the interaction

under arbitrary screen placements. The red arrows indicate the

samples obtained by individual camera rows. M = 3 indicates

that three camera rows capture the same row on the screen.

Assuming that the camera begins sampling at time k, the

captured signals can be written as follows:

R(xc,t) = cos(2πfpwm((t+ k + xcΔC) + xsΔS) + θ)

= cos(2πfpwm(t+ k) + 2πfpwm(xcΔC + �xc

M
�ΔS) + θ)

(2)
where R(xc, t) represents the signal received at camera row

xc and time t. xc ranges from 0...Xc − 1 where Xc indicates

the number of camera rows. ΔC represents the rolling shutter

interval (Fig. 3).

C. Sampling Under Arbitrary Screen Placement

It would be unreasonable to expect all cellphone users to

hold their devices at precisely the same angle while the QR

code is being read. Thus, we considered sampling with the

mobile device held at an arbitrary angle relative to the camera.

Fig. 9(a) shows the situation in which the screen is placed at

angle α relative to the direction of the rolling shutter. For this

arbitrary case, we can obtain a new projection ratio as follows:

M =
Xs→c cosα

Xs
(3)
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Fig. 7. Asynchronous PWM dimming in OLED screens and example of
sampling using a rolling shutter camera where the projection ratio M = 3.

As in Eq.2, the received signal from line xc at cross-angle

α (0° ≤ α ≤ 360°) can be modeled as follows:

R(xc, t, α) = cos(2πfpwm(t+ k)

+ 2πfpwm(xcΔC + �xccosα

M
�ΔS) + θ)

Specifically, the stripe pattern changes as a function of

device rotation and distance from the camera (Sec. VI-A).

Fig. 9(b) indicates the variation in angle due to rotation and

projection ratio M . The scanning performed by the rolling

shutter camera and the PWM signal can be considered frequen-

cy vectors fc and fs, which are derived as fc =
1

ΔC
, fs =

1
ΔS

.

Due to the degree of projection ratio between the screen

and camera, it is possible to convert the actual PWM signal

frequency vector into a capture coordinate as fS→C = fsM .

The combined stripe pattern vector (denoted by fStrip) is

shown in Fig. 9(b). Thus, the resulting angle of the stripe

patterns relative to the horizontal (denoted by φ) can be derived

as follows:

tanφ =
fS→C cosα+ fc

fS→C sinα
=

ΔCM cosα+ΔS

ΔCM sinα
(4)

when α = 0° or 180°, the refresh direction is the same or

the inverse direction of the rolling shutter, such that the stripe

patterns are aligned parallel to the bottom of the image.

D. Sampling Using Multiple Frames

The frequency resolution is limited by the length of the

data; If we capture only one photo, the frequency resolution

is insufficient to determine PWM frequencies of different

screens. One intuitive solution is to concatenate multiple

frames of a video. However, concatenating frames from an

OLED screen is a nontrivial problem, due to the presence of

gaps between the frames. The start of exposure in the first

row in the previous frame is denoted as t, whereas the start

of exposure in the first row in the subsequent frame is t+Tf ,

where Tf denotes the frame duration, as shown in Fig. 3.

Thus, the received signal associated with continuous cap-

tures through multiple frames can be denoted as follows:

R(xc, t, α, n) = cos(2πfpwm(t+ nTf + k)

+ 2πfpwm(xcΔC + �xc cosα

M
�ΔS) + θ)

(5)

(n ∈ 0, 1, 2, ...)

where n denotes the frame number beginning at 0.

Note that Eq. 5 can be treated as a spatial frequency related

to row index xc at specific time t+nTf +k. cos(2πfpwm(t+
nTf + k) can be regarded as the initial phase in the spatial

Capture Photo 

Screen 

Fig. 8. Projection ratio be-
tween screen and camera.

Capture Photo 

(a) Projection ratio (b) Stripe angle

Fig. 9. Projection ratio and resulting stripe angle
in arbitrary direction.

domain, denoted by θ0. Thus, transforming Eq. 5 into time

domain using one sample per line, we can derive the true

sampling interval in the communication between screen and

camera as follows:

Δs→c =
xcΔC + �xc cosα

M �ΔS

xc
(6)

where the sampling rates for extracting frequency is denoted

by fs = 1/Δs→c.

However, variations among cameras in terms of rolling

shutter effects lead to differences in ΔC and interval ΔS

between the lines in the PWM signal. Variations in frame

rates and sampling intervals can also lead to information du-
plication or information loss. Essentially, situations involving

desynchronization can be divided into two cases:

• Case1: Frame duration Tf exceeds the sampling duration

xcΔs→c, leading to information loss.

• Case2: Frame duration Tf is shorter than the sampling

duration xcΔs→c, leading to information duplication.

Fig. 10 presents an example of desynchronization due to

variations in frame rates and sampling intervals in three

continuous frames. As shown in Fig. 10(a), there exists a time

gap ΔT = Tf − xcΔs→c between frame 0 and frame 1 when

ΔT > 0. The signal transmitted during this gap period is not

detected in any of the received frames, such that the captured

video is non-continuous (incomplete).

Information duplication can occur in two sequential frames

when ΔT < 0. As shown in Fig. 10(b), frame 0 and frame

1 contain a portion of the tail replicated from frame 0. In

these situations, the camera receives identical stripe signals in

two sequential frames. Recovering the original signal requires

interpolation to deal with information loss or the removal of

duplicated frame sections and concatenation of the remaining

sections to deal with information duplication, where the length

of the lost or duplicated data is denoted by ΔT

Δs→c
. Specifically,

we insert a specific number of zeroes (matching the length of

the lost data) into the interval for information loss. Conversely,

we remove a specific number of tails (matching the length of

the data duplication) for information duplication.

VII. SYSTEM DESIGN

Fig. 11 illustrates the architecture of SCREENID system,

comprising two parts: encoding by the sender (smartphone

screen) and decoding by the receiver (camera).

A. Encoding

Verifying the authenticity of a screen requires that additional

information be embedded in the QR code, namely (i) PWM
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Fig. 10. Problems associated with desynchronization due to fluctuations in
frame rates and sampling intervals.

frequency fpwm and (ii) PWM latency between two rows

ΔS . The size of the QR code to be generated is adjusted

automatically based on the resolution and size of the screen,

such that the length of the edge is of the fixed number of

pixels (580 pixels in our implementation) across screens.

Using SCREENID requires that fpwm and ΔS are both

known in advance. fpwm can be obtained when the user first

uses the system and presents his/her phone to the cashier. The

cashier then uses the Frequency Extraction scheme to compute

fpwm. In practice, the device on the cashier side would use 10
fpwm measurements from which to derive the median fpwm.

Estimating PWM latency ΔS is not a trivial matter; therefore,

we propose the method below.

B. Determining PWM Latency ΔS

PWM latency ΔS is determined from an image captured

at an angle of 90° (i.e., α = 90° in Fig. 9) using a camera

with a known configuration. As indicated in Eq. 4, when α =
90°, the angle of stripe φ is a function of ΔS that satisfied

tanφ = ΔS

ΔCM , therefore ΔS = ΔCM tanφ, where ΔC is

the rolling shutter interval and M is projection ratio computed

using Eq. 3.

In our preliminary analysis, we found little variation in

PWM latency ΔS among phones of the same model; therefore,

it was necessary to measure ΔS only once for each phone

model. This could easily be achieved using crowdsourcing

where one user of a given phone model performs the calibra-

tion and shares the results. Likewise, this information could be

provided by the manufacturer when the device is first released.

C. Decoding

Verifying that the captured QR code is authenticated in-

volves embedding the rolling shutter interval ΔC in camera

and PWM latency ΔS in the QR code for use in estimating

the PWM frequency. The QR code is accepted only if the

estimated PWM frequency and the PWM frequency embedded

in the QR code are a close match lower than a threshold.

The decoding process is performed in two steps: (i) deter-

mining the position of the QR code and (ii) extracting the

PWM frequency.
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Fig. 11. Overview of SCREENID system.

D. Measuring Rolling Shutter Interval ΔC

Rolling shutter interval ΔC must be known a priori in

order to compute the PWM frequency. However, we observed

inaccuracies in the rolling shutter interval provided by Android

Camera2 API [15]. Therefore, we programmed SCREENID to

calibrate camera to obtain an accurate indication of rolling

shutter interval (denoted as ̂ΔC). Calibration involves captur-

ing an image of an LCD screen with a known PWM frequency

fpwm. Based on Eq. 5, the wavelength (i.e., the width of a pair

of black and white stripes) denoted by Wlcd can be derived

as Wlcd = 1/fpwm/̂ΔC . Thus, the accurate rolling shutter

interval can be estimated as ̂ΔC = 1/fpwmWlcd. Note that it

is easy to calibrate for camera on cashier when carrying out

factory examination.

E. Optimizing the Camera Configuration.

The images obtained using the camera serve two purposes.

The first purpose involves estimating the position of the

QR code and extracting the information embedded. We set

the camera to auto-mode to obtain the optimal configura-

tion for ambient lighting conditions to obtain a clear image.

The second purpose involves measuring the PWM frequency,

which requires a clear indication of the stripes. The following

configuration was adopted for capturing video frames:

Exposure time. Many smartphones use PWM dimming

only under a low brightness ratio, which tends to extend the

exposure time. Note however that an excessively long exposure

time would allow the occurrence of more than one PWM cycle,

thereby compromising stripes clarity. Thus, we configured

SCREENID to operate at an exposure time of 0.3ms.

ISO. SCREENID was configured to use the highest available

ISO, as this tends to enhance contrast between the black and

white stripes. High ISO operations also tend to generate noise;

however, the fact that most of the noise it at lower frequencies

means that it’s easily filtered out using a highpass filter.

Aperture. SCREENID was configured to use the largest avail-

able aperture as this tends to blur the background, making it

easier to extract the contours of the screen.

F. Determining QR Code Position

Estimating the distance and angle between the screen and

the camera involves taking a single photo in auto-mode in

order to detect the QR code. The position symbols in the the



(a) Original code. (b) Rotation angle. (c) Contour.

Fig. 12. Methods used to obtain the rotation angle and projection ratio using
a QR code of fixed size

QR code (blue blocks in Fig. 12(b)) to form a right-angle

triangle (green in Fig. 12(b), which can be used to estimate

rotation angle α.

Locating the position markers makes it possible to extract

the contours of the QR code (red in Fig. 12(c)) and measure

the size of the QR code in the photo. The size of the displayed

QR code is fixed; therefore, it is possible to compute projection

ratio M as a fraction of the length of a pixel along the both

sides of the original QR code.

G. PWM Frequency Extraction Using Multiple Frames

After extracting essential information from QR code, the

camera switches to video mode for frequency extraction. As

shown in Fig. 11, this process includes three following steps:

Contour Extraction: Each frame is first transformed into

a gray-scale image to enhance contrast. The image then

undergoes denoising and binarization, before the boundaries

are detected using a function based on the Sobel operator [19].

Multi-frame Concatenation: From among the multiple

columns in the contour, we select the longest column as a

data sample of screen in a frame to maximize the data length.

The frequency resolution (fres) of the Fourier transform is

fres = fsample/N [28], where fsample indicates the sampling

rates and N indicates the number of samples. Identifying the

characteristic PWM frequency requires a frequency resolution

of fres = 0.1Hz or smaller. This can be achieved by

concatenating columns from multiple frames to increase N ,

as described in Sec. VI-D.

Frequency Extraction: For a usual condition, the camer-

a of smartphones can sample at fsample = 80kHz with

4000 columns at frame rates of 30fps. Thus, it requires
fsample

fres×4000×30 = 6.7 seconds. Improving system efficiency

requires reducing the time required to capture frames, while

estimating the PWM frequency with high precision.

This was achieved by exploiting the fact that the sam-

pling rate (e.g., 80kHz) usually exceeds the Nyquist rate

required to reconstruct PWM signals (e.g., 500Hz). Thus,

we down sample a sequence of samples of length N (e.g.,

[x1, x2, x3, · · · , xN ]) by a factor of K by taking a sam-

ple at K intervals, which results in K segments. (e.g.,

[x1, xK+1, x2K+1, · · · ], [x2, xK+2, x2K+2, · · · ], · · · ) from the

original sequence. The sampling rate of each segment is

becomes fsample/K. We then concatenate all of the seg-

ments into a single sequence of length N , which retains the

same PWM frequency as long as the new sampling rate is
fsample

K > 2fpwm. We apply the Hanning window [36] to

make the concatenation smoother before applying the Chirp-

Z transform (CZT) [32] to improve spectral resolution in the

frequency range of interest (i.e., fpwm). We named the whole

process Down-sampling CZT in following text.

Verification: SCREENID compares the estimated PWM fre-

quency with the one embedded in the QR code. When the

difference is less than a given threshold (0.03Hz in current

study), the QR code is accepted. Otherwise, it is rejected.

VIII. EVALUATION

A. Experiment Setup

We generate version-3 (29 × 29) QR codes2 using

SCREENID.The size of QR codes is 580 × 580 pixels. 50
smartphone screens and 5 smartphone cameras are used in

our evaluation. Among 50 screens, 10 are LCD and 40 are

OLED screens. 30 screens are of the same model.

Unless otherwise stated, we evaluated SCREENID as fol-

lows. For each screen, we displayed 40 QR codes where

10 embedded the correct PWM frequency of the screen for

authentication while the other 30 embedded that of another

screen randomly selected from 50 screens for attack.

We utilize TPR (True Positive Rate) and FPR (False Positive
Rate) as the metrics for performance evaluation, which are

defined as follows:

• TPR = Number of accepted authorized QR code
Number of verification attempts

• FPR = Number of accepted unauthorized QR code
Number of attack attempts

The higher TPR is and meanwhile the lower FPR is, the better

SCREENID performs.

B. Microbenchmark

1) Number of Required Frames: Here we evaluate how

many frames are required to accurately estimate the PWM

frequency. We used 5 cameras to capture a 60-second video

of each of 50 screens. We compare the proposed down-

sampling CZT with FFT and zero-padding FFT. The average

TPR under various number of frames is reported in Fig. 13(a).

FFT needed 121 frames to get enough frequency resolution

to achieve 100% TPR. Zero-padding FFT [16] is a well-

known method to refine the frequency granularity by padding

zeros. Zero-padding FFT and down-sampling CZT perform

similarly and needed 65 and 60 frames, respectively. However,

the computation complexity of zero-padding FFT is larger

than down-sampling CZT [32], so that down-sampling CZT

performs faster than zero padding FFT as shown in Fig. 13(b).

In the following evaluation, we take a 60-frame video and used

down-sampling CZT to compute PWM frequency.

2) Camera Configuration: To find the best exposure time

and ISO, we measure the TPR under various settings and show

the results in Fig. 14. For the exposure time, we balance the

brightness ratios and set exposure time to 0.3ms. For ISO, we

can see that the higher ISO is, the higher the TPR is; therefore,

we set ISO to the highest available for the camera.

3) Threshold: SCREENID is authorized only when the

difference between estimated frequency and true frequency

2Alipay uses version-2 (25×25) QR codes [34] while WeChat uses version-
1 (21× 21) [34] QR codes. Version-3 QR codes which carry more data are
representative of the amount of data needed by these systems.



(a) Verification TPR. (b) Verification time.
Fig. 13. Verification TPR and time of different frequency extraction schemes.

(a) Impact of exposure time. (b) Impact of ISO number.

Fig. 14. The TPR on impact of exposure time and ISO number under different
brightness ratio.

smaller than the threshold. However, when the threshold

become larger, the TPR and the FPR both become higher.

Fig. 15 shows the results of TPR and FPR on the impact of

threshold. To consider a better trade-off, we select 0.03Hz
as the threshold where the average TPR is above 94.3%, the

FPR is below 0.8% across the same model and 0.5% across

our dataset.

4) Processing Time: We measure the processing time of

SCREENID on 5 phones. The total computation time is 0.857s.

The feature extraction scheme takes 0.605s which accounts for

most processing time. Currently we implement down-sampling

CZT using OpenCV [4] which can be further optimized by

using native DSP SDK [31]. We leave it in our future works.

C. Overall Performance

We evaluate the overall performance using 5 cameras and

50 screens. Fig. VIII-C shows the TPR and FPR of 50 screens.

The first 30 screens are of the same model. The average TPR

is 99.7% and 95.0% for all screens and phones of the same

model. The FPR for each screen in the same model is lower

than 1.5%, and for other models, the FPR is 0%, respectively.

D. Robustness of SCREENID

1) Impact of Screen Brightness: Fig. 17(a) shows the TPR

under various brightness ratios. We can see the TPR is

above 99.5% when the brightness ranges from 10% − 90%.

When the brightness is 100%, the screen is always on so it

doesn’t flicker. Therefore, SCREENID automatically adjusts

the brightness to 50% to ensure PWM dimming is applied.

2) Impact of Capturing Distances: We evaluate SCREENID

under various distances ranging from 0cm to 26cm. Fig. 17(b)

shows that TPR is 100% when the distance is 10cm− 18cm.

When the captured distance is smaller than 8cm, some cameras

cannot capture the complete QR code so the TPR drops to 0%.

When the distance is longer than 22cm, the true sampling

interval Δs→c becomes larger while the projection ratio M
becomes smaller. As the result, the wavelength of stripes is

larger than the length of the camera sensor so SCREENID

cannot estimate the PWM frequency accurately. This result

(a) TPR on the impact of threshold (b) FPR on the impact of threshold

Fig. 15. The TPR and FPR on the impact of threshold of 50 screens we
collected (30 are of the same model).

(a) TPR for each screen. (b) FPR for each screen.

Fig. 16. The TPR and FPR of 50 screens where the first 30 (red) are of the
same model. The two groups are ordered by their true PWM frequencies.

implies SCREENID works well at the distance from 10−18cm,

which is enough for the mobile payment and can prevent from

being candid in a much further distance.

3) Impact of Rotation Angles: We evaluate the impact of

rotation angles (i.e., α in Fig. 9(a)) by rotating the screen from

0°−360° clockwise. Fig. 17(c) shows that TPR is above 95.2%
in all cases. This implies that SCREENID is robust against how

users hold the phone.

4) Impact of Offset Angles: When the camera is not held

right above the screen, the captured photo may be distorted.

To evaluate the impact of the distortion, we measure the TPR

under various offset angles and show the results in Fig. 17(d).

We can see when the offset angle is less than 5°, TPR is above

91.8%. However, when the offset angle is larger than 10°, TPR

drops to 0%. As we show in the user study, the restriction does

not impair the usability of SCREENID in daily use as the users

can easily put the phone with an offset angle within 5°. The

result also demonstrates SCREENID can successfully prevent

from being sniffed in other viewing angles.

5) Impact of Ambient Light: QR codes are widely used in

a variety of environments and the lighting condition is one

of the key factor affecting screen to camera communications.

We evaluate the impact of lighting condition under following

environments: LA:indoor with light off, LB , LC , LD: outdoor

at 9am,12am,5pm, LE :indoor with light on. The results are

shown in Fig. 18. It suggests that SCREENID works well under

various lighting conditions but the TPR may slightly degrade if

the light is too strong (91.3% while using outdoor at 12a.m.)

E. User Study

We recruited 10 participants to use SCREENID (7 male and

3 female, ages from 22− 56.) Each participant was requested

to hold a smartphone to decode 30 traditional QR codes and

30 SCREENID QR codes. Two types of codes were given

alternately to avoid the bias.

First, all the traditional and SCREENID QR codes were

correctly decoded. We measured the time from a QR code was

given to that it was successfully decoded and show the CDF in



(a) Impact of screen brightness. (b) Impact of capture distance.

(c) Impact of rotation angle. (d) Impact of offset angle.

Fig. 17. The TPR under various impact factors.

Fig. 19. We can see that traditional and SCREENID QR codes

take 1.6s and 4.8s to decode in average. SCREENID QR codes

need a longer time because SCREENID takes a 2s video and

additional process time around 0.857s (Sec. VIII-B4).

As for the hand shaking effect in using SCREENID, there is

inevitably a certain amount of camera shake (usually less than

2mm) [8]. All SCREENID QR codes are correctly verified

implying SCREENID is robust against the small shaking. It’s

because we extract a column from each frame independently

so the shift between frames do not impair the accuracy.

Finally, we evaluated if participants can put the phone at

the right positions. As shown in Sec. 17(b) and 17(d), the

best working distances and offset angles is 10 − 18cm and

−5° to 5°, respectively. We measured the phone positions

while participants presented QR codes and show the CDF of

distances and offset angles in Fig. 20. We can see that of

95% offset angles are within 4.5° and 95% distances are from

10− 16cm, which implies SCREENID can successfully work.

IX. SECURITY ANALYSIS

In this section, we discuss various attacks and the ability of

SCREENID to deal with them. We assume that the attacker is

able to determine the PWM frequency, but is not cooperating

with the cashier responsible for scanning the QR code.

Can attackers mimic the victim’s PWM frequency by
changing their phone’s PWM frequency? PWM dimming

is applied to an on-chip display controller [3] using one of

two methods [17]. The first is to control the display controller

via I2C interface, and produce corresponding PWM signals.

The attackers cannot change their PWM frequency without

replacing the display controller chip. The second involves

the CPU outputting a PWM signal through a pin connected

to display controller. The attackers should have the root

permission to modify low-level drivers and identify the CPU

pin if he want to alter PWM frequency. However, increasingly

strict security restriction on the Android system [25] makes it

nearly impossible to modify PWM frequency.

Can attackers mimic the victim’s PWM frequency by
adding rolling stripes over the QR codes? According to

Eq. 5, the stripes on the screen (i.e., the victims screen) are

Fig. 18. The TPR on the impact of
lighting conditions.

Fig. 19. The required decode time of
traditional and SCREENID QR codes.

(a) Offset angle. (b) Distance.
Fig. 20. The CDF of initial offset angle and distance.

a function of PWM frequency fpwm as well as the rolling

shutter interval ΔC . The fact that the attacker does not know

the configuration of the camera on cashier (i.e., ΔC) makes

it impossible to produce the correct rolling stripes over the

QR codes; i.e., reflection of QR code on glass of cashier only

obtain ΔC of front camera, not the camera of cashier.

Can attackers mimic the victim’s PWM frequency by using
an external lighting device? If we assume that the attacker

has a lighting device capable of flickering at an arbitrary rate,

it might be possible to light their screen at a rate mimicking

the PWM frequency of the victim. However, we do not view

this kind of attack method as practical, as it would be easily

detected by the cashier.

Can attackers happen to have a phone with the same
PWM frequency as that of the victim’s phone? In the

proposed system, the threshold we select is 0.03Hz. As shown

in Fig. 4(b), 99.8% of the pairwise difference in frequency

is larger than 0.03Hz. This would require that an attacker

use 450 phones to achieve 90% success rate. Such an attack

would indeed be possible; however, it would be prohibitively

expensive. SCREENID is meant to enhance the security of

QR codes; however, it cannot guarantee security. Note that

SCREENID does not need customized techniques so that it can

meanwhile incorporate with existing authentication schemes.

In summary, SCREENID provides robust protection against

attacks using hardware (not easily manipulated) and joint fea-

tures (fpwm, ΔS , and ΔC), which are difficult to compromise

at the same time. It is expected that PWM dimming will

become the overwhelming standard as OLED gain popular-

ity [33] thanks to their light weight, wide viewing angle, and

high color accuracy [3].

X. CONCLUSION

In this study, we proposed SCREENID to enhance the

security of QR codes by fingerprinting the screens displaying

the QR codes. Only QR codes displaying on its specific

screen are accepted. SCREENID exploits PWM frequency as a

unique screen fingerprint. Extensive experiments demonstrate

the efficacy of SCREENID in differentiating screens to enhance

the security of QR codes in real-world situations.
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