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Biological Feature Based Solutions
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Biological Feature Based Solutions

« 2D/3D Face Model Fingerprint
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User Behavior Feature Based Solutions

* Typing/Clicking Behavior
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* Typing/Clicking Behavior
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User Behavior Feature Based Solutions

* Typing/Clicking Behavior

Two Hands, Landscape

One-hand, Two Hands, Portrait



User Behavior Feature Based Solutions

* App Using Behavior




User Behavior Feature Based Solutions

Power Consumption Data
Memory/Cache Data




User Behavior Feature Based Solutions

« Common phenomenon: Electromagnetic Radiation Signals exit in smart devices
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« Common phenomenon: Electromagnetic Radiation Signals exit in smart devices
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User Behavior Feature Based Solutions

« Common phenomenon: Electromagnetic Radiation Signals exit in smart devices

_—

EM Induction

0O 5 10 15 20 25
Time (ms)

-

* We propose MagPrint, a novel EM signals based solution using magnetometer

* Advantages of EM side channel :
* Contain rich user behavior information @
» Data accessibility, and easy to deploy



Preliminary

* Q1: Detection and distinction of users’ operations.
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* Q2: Distinction of users’ operation habits.
Type fast Type slow
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* Q2: Distinction of users’ operation habits.
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* Q3: Consistence over spatial and temporal domain.
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* Q3: Consistence over spatial and temporal domain.
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System Workflow
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Challenge | —— Noisy EM signal cancellation

* Noisy EM signals caused by human movements because of the
geomagnetic signal.
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Challenge | —— Noisy EM signal cancellation

* Noisy EM signals caused by background running APPs.
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* Noisy EM signals caused by background running APPs.
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Challenge | —— Noisy EM signal cancellation

* Noisy EM signals caused by background running APPs.
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Challenge | —— Noisy EM signal cancellation

* Filter out noisy EM signals caused by human movement
* Llow-pass filter to capture interactions
e Gaussian filter to eliminate random noise
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Challenge | —— Noisy EM signal cancellation

* Filter out noisy EM signals caused by human movement
* Llow-pass filter to capture interactions

e Gaussian filter to eliminate random noise Ke/vlgoard Inputs
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Challenge | —— Noisy EM signal cancellation

e Cancel the noisy EM signals caused by background running APPs
e EM signals of Background Running APP change over time.
* This change is gradual, such as listening to music.
e 2-layer LSTM regression model is applied to cancel the background APP noise.
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e Cancel the noisy EM signals caused by background running APPs
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Challenge I —— Diversity of APPs on the market

These user behaviors are more related to these APPs themselves,
rather than the reflection of user habits.
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Classify APPs into multiple categories
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Challenge Il - Users’ Habits Tracking

* Mining users’ habits from high-frequency EM signals.

e Users finish interactions in short time, while capturing users’ habits
need long time range.

* Present users’ habits also depends on previous user interactions.

e Users’ using habits change over time or mood, and there are also
users with similar habits.
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Users’ Habits Extraction
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Distinguish Similar User Habits

Learning with Triplet
loss function
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Prototype

Magnetic Sensor
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Evaluation

TABLE II: List of 30 Apps collected in the experiments.

1

App Category Apps Increased by 10.9% I
Internet Chrome, Firefox, Internet Explorer, e v

Amazon Shopping, Baidu Cloud Download < 0.9
Business Microsoft Word, Excel, Power-point, o

Microsoft Notepad, Adobe Acrobat XI Pro g
Communication Skype, Tencent WeChat, QQ 2 0.8
Game Zuma, Candy Crush Saga, Minecraft, <<

Plants vs. Zombies, Agar Online

Multi Media Youtube, Tencent Video, Aqiyi Video, Potplayer, 0.7

NetEase cloud Music, Windows Media Player

SNS Gmail, Github, Twitter «%'-@ .ﬁ Qg

System System Player, System Camera, System 3-D Plot < © \fp Ce}/ (;é:v
< o

TABLE III: List of 10 devices collected in the experiments. <

Model OS versions CPU Speed(GHZ) ~ 600

MacBook Air MQD32CH/A MacOS 10.13 1.7 = 500

MacBook Pro MMGM2CH/A  MacOS 10.13 2.8 %

Hp ENVY14-J102TX Windows 10 1.6 2400

Hp 15-bel0ITX Windows 10 2.5 2 300

Lenovo T440 Windows 10 2.4 b= 200

ASUS Vivobook 4000 Windows 10 24 %n

ASUS FX-PRO Windows 8 2.4 '% 100

Samsung 800G5SM-X08 Windows 8 2.5 =0

Dell Ins-15PD-7745BR Ubuntu 17.10 2.3

Acer SF314-52-59TW Ubuntu 17.10 2.5
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Conclusion and Feature Work

Conclusion
* Propose a novel continuous user fingerprinting method
* Deep learning based user interaction habits tracking
* Easy-to-deploy prototype

Future work

* Expand training set, improve accuracy and robustness

* New scenarios such as energy saving and privacy protection
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