
IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 24, NO. 3, MARCH 2025 2455

MagSpy: Revealing User Privacy Leakage via
Magnetometer on Mobile Devices

Yongjian Fu , Lanqing Yang , Hao Pan , Member, IEEE, Yi-Chao Chen, Member, IEEE,
Guangtao Xue , Member, IEEE, and Ju Ren , Senior Member, IEEE

Abstract—Various characteristics of mobile applications (apps)
and associated in-app services can reveal potentially-sensitive user
information; however, privacy concerns have prompted third-party
apps to restrict access to data related to mobile app usage. This
paper outlines a novel approach to extracting detailed app usage in-
formation by analyzing electromagnetic (EM) signals emitted from
mobile devices during app-related tasks. The proposed system,
MagSpy, recovers user privacy information from magnetometer
readings that do not require access permissions. This EM leakage
becomes complex when multiple apps are used simultaneously and
is subject to interference from geomagnetic signals generated by
device movement. To address these challenges, MagSpy employs
multiple techniques to extract and identify signals related to app
usage. Specifically, the geomagnetic offset signal is canceled using
accelerometer and gyroscope sensor data, and a Cascade-LSTM
algorithm is used to classify apps and in-app services. MagSpy also
uses CWT-based peak detection and a Random Forest classifier to
detect PIN inputs. A prototype system was evaluated on over 50
popular mobile apps with 30 devices. Extensive evaluation results
demonstrate the efficacy of MagSpy in identifying in-app services
(96% accuracy), apps (93.5% accuracy), and extracting PIN input
information (96% top-3 accuracy).

Index Terms—Electromagnetic signal, mobile application usage,
privacy.

I. INTRODUCTION

MOBILE devices have become an increasingly integral
part of our everyday lives. The way individuals use

mobile apps is heavily influenced by their personal interests and
preferences, leading to a wide range of usage patterns within the
same application. As illustrated in Fig. 1, app usage behavior can
provide a unique insight into users’ privacy profiles. Many third-
party app developers and service providers depend on this data
for various purposes, such as offering personalized services and
targeted advertising recommendations [1], as well as predicting
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Fig. 1. Extraction of potentially-sensitive user information through analysis
of detailed mobile app usage.

human mobility patterns [2]. However, growing concerns over
the potential for private information leaks have led third-party
applications to reduce their access to mobile app usage data. This
includes system-kernel information such as the /proc filesystem,
battery statistics, and internet traffic data on both Android and
iOS devices [3]. Although data from cellular network providers
could serve as an alternative source for app usage information,
strengthened security protocols within app services are making it
progressively more challenging to extract such data. In response
to these concerns, governments are implementing regulations to
protect user privacy, which further restrict third-party access to
data with user labels.

Several studies have demonstrated how data from the op-
erating system kernel can be exploited to deduce information
about running app and usage behaviors. This includes analyzing
sources such as network traffic statistics [4], [5], [6], power
consumption traces [7], [8], CPU utilization [9], [10], memory
usage statistics [11], [12], and other information available via
the procfs pseudo filesystem [13] or system APIs [14]. De-
velopers of mobile operating systems, such as Android and
iOS, have attempted to thwart such attacks by limiting ac-
cess to sensitive system-kernel data resources. In addition, a
number of researchers have explored the possibility of using
electromagnetic (EM) signals to infer the launch of specific
apps [15], [16], [17], [18], [19]. More specifically, these schemes
exploit magnetometer readings to monitor CPU activity without
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requiring permissions, enabling the launch of fingerprinting
applications from scratch (via a “cold start”) on both laptops and
smartphones. In real-world scenarios involving mobile devices,
the launching of apps varies. Apps launched in a “hot-start”
manner (reloading data already residing in memory) result in EM
signals with fewer characteristics, making it difficult to identify
apps using the same methods described in [15]. Moreover,
systems designed to detect the launching of mobile apps are
unable to track the detailed time durations of active apps with
which the user is closely interacting in the foreground or identify
apps running in the background. Furthermore, much of the
information required to infer personal behavior and preferences
pertains to in-app services usage [20].

This paper proposes a novel system based on the EM side
channel for the characterization of the continuous mobile app
usage behavior as well as interactive information (e.g., PIN
input) in real time. The proposed system, referred to as MagSpy,
delineates app functionality across three levels: app identifica-
tion, in-app activity, and keystroke detection. Specifically, this
system can determine: 1) when a user is engaging with a specific
app, 2) the duration of app usage and the features being accessed,
and 3) the passwords entered for app access or mobile payments.
Consequently, MagSpy enables an attacker to discern a user’s
interests, habits, and even their passwords.

Developing MagSpy imposes a number of daunting chal-
lenges: (1) The built-in magnetometer captures EM signals
associated with running apps from the target device as well
as fluctuations in the surrounding geomagnetic field. Thus, our
first challenge is to extract EM signals from noisy magne-
tometer readings. (2) Mobile devices handle multiple app tasks
simultaneously, both in the foreground and background. The
background apps generate significant noise, complicating the
task of identifying the specific app in use. Furthermore, many
apps offer various in-app services (e.g., surfing, editing pictures,
watching videos, chatting, and playing games), and the unique
configurations of numerous mobile devices lead to different EM
patterns even for identical tasks. Thus, our second challenge is
to accurately map the EM signals to the corresponding app and
in-app activities while mitigating the impact of background app
noise and characterizing device-specific EM patterns. (3) The
electromagnetic variations caused by human actions (e.g., PIN
input) are extremely subtle and intertwined with app behaviors.
Therefore, our ultimate challenge is to detect and decouple
human actions from complex electromagnetic fluctuations.

To tackle these challenges, we firstly develop a multi-layer
perceptron (MLP) regression scheme that leverages 3-axis ac-
celerometer and 3-axis gyroscope data for the fitting of geomag-
netic field data in order to effectively negate geomagnetic signals
induced by user movements or other external factors. Secondly,
to accurately map the EM signals to the corresponding app
and in-app activities while mitigating the impact of background
app noise and characterizing device-specific EM patterns, we
propose a weighted data augmentation method. This method
enhances the training dataset by incorporating noise associated
with background apps and services. Additionally, we design
a Cascade-LSTM classification model to characterize in-app
services and app types. This model reduces the effects of dimin-
ished characteristic information in EM signals caused by a hot

start. It initially assigns labels to in-app services (e.g., watching
videos, chatting, or surfing) and then aggregates these labels
to accurately infer the associated apps. Preliminary experiments
revealed that most mobile devices using a given operating system
(OS) generate similar EM signals when performing the same
tasks, suggesting that EM signals are primarily influenced by the
software environment rather than internal hardware components.
Consequently, we train two classification models specifically
for each of the mainstream mobile OSs (Android and iOS).
Finally, a peak detection algorithm based on the continuous
wavelet transform (CWT) and Random Forest (RF) classifier are
combined to recognize the peak signal associated with keyboard
opening and deduce important key strokes (e.g., PIN). Extensive
experiments demonstrate the effectiveness and generalizability
of the proposed scheme when applied to a diversity of devices,
apps, and users.

The main contributions of this work are as follows:
� The proposed MagSpy system is able to simultaneously

inferring fine-grained mobile app usage information and
sensitive user actions (such as PIN input) continuously
through readings from the built-in magnetometer, all with-
out requiring user permissions.

� We develop a highly elaborate time-series classification
algorithm (i.e., Cascade-LSTM) to classify running app
and the corresponding in-app services.

� We design a peak detection algorithm based on CWT
to identify EM signals triggered by changes in screen
color during keystrokes, which are then analyzed to extract
detailed PIN input information using a Random Forest
classifier.

� Extensive evaluations on Android and iOS devices demon-
strate the efficacy of the proposed MagSpy system in
accurately identifying the apps being used as well as the
in-app services and PIN input information in an energy
efficient manner.

II. PRELIMINARY ANALYSIS

Preliminary experiments are conducted to answer four pri-
mary questions: i) Does the manner in which an app is launched
affect the corresponding EM patterns? If so, can all of the EM
patterns be distinguished? ii) What are the characteristics of
the EM signals generated when using specific apps involv-
ing different in-app services? iii) What other factors impact
magnetometer readings? iv) How to decouple subtle keystroke
features from complex mixed signals? Our answers to the above
questions demonstrate the feasibility of using EM data to infer
details pertaining to the detailed app usage. They also help to
identify some of the challenges that would be involved in further
developing this technology.

A. EM Signals From Mobile Devices

We install a proprietary app on the testing devices to enable
the continuous collection of the built-in magnetometer readings
in the background at the maximum sampling rate. The magne-
tometers built into mobile devices are 3-axis Hall-effect sensors,
which measure the strength of the surrounding magnetic field
along the x-, y-, and z-axes. Note that in this work, we use
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Fig. 2. Signals of magnetometer data and working states of different components when downloading a file with the screen off.

Fig. 3. Comparison between the composite signals of various electronic
components and the real signals.

the total magnetic field strength as in [15]. The formula used
to calculate the total magnetic field strength MT (t) is as fol-
lows: MT (t) =

√
mx(t)2 +my(t)2 +mz(t)2, where mx(t),

mx(t), and mx(t) represent magnetometer readings of the three
axes.

We next analyze how to characterize the working states of
electronic components using EM signals. Using Android Debug
Bridge (ADB) [21], we collect EM signals and system kernel
data, including CPU usage, frequency, and memory statistics.
Since ADB lacks screen data, the smartphone screen remains off.
EM signals and system data are recorded over 10 minutes while
downloading a file, with Fig. 2 showing 15 seconds of this data.
The results show no direct link between EM signal patterns and
individual components like the CPU or Cache. Instead, the EM
signals reflect a mix from all onboard components, excluding
the screen. We then use Ridge Regression [22] to model the EM
signals, incorporating data from various scenarios like playing
music or downloading files. The relationship for the EM x-axis
data can be expressed as follows:

EMx = 0.33CPUload + 0.12Buffer − 0.08Rx

+ 0.15Tx+ 0.31Mem+ 0.25Active

+ 0.01Cap+ 0.03CPUfreq + 0.10Cache (1)

The regression results in Fig. 3 show that these components can
be used to reconstruct the EM signals.

TABLE I
CLASSIFICATION RESULTS OF EM SIGNALS GENERATED DURING

COLD-/HOT-START LAUNCH OF TEN APPS

B. EM Signals Associated With Launching an App

We first record EM signals generated during the launch of 10
apps under cold-start (i.e., from the hard disk) and hot-start (i.e.,
from the “Recent Apps” list) conditions. As shown in Fig. 4(a),
the EM patterns exhibit strong spatial and temporal consistency,
varying only based on the launch method. This is due to the fact
that cold-start requires full app initialization, whereas hot-start
involves reloading data already present in memory.

We apply the feature extraction method from [15] to 20 EM
signal traces collected from each of the 10 apps under both cold-
start and hot-start conditions. Various time-series classification
algorithms are then used to assess the distinctiveness of the EM
patterns, with results shown in Table I. The initial classification
results for EM signals during hot-start are unsatisfactory, barely
surpassing random guess accuracy. Thus, the EM side channel
provides limited information on hot-start app launches. These
findings highlight the need for more efficient feature extraction
methods to identify app usage during hot-start.

C. EM Signals Across Devices

The cold-start launch of an app involves the execution of a
fixed code set, which can be used to facilitate the exploration
of similarities and differences in EM patterns emitted from
different mobile devices. Thus, we record the magnetometer
readings generated by another two smartphones while the same
version of the same app is launched, the results of which are
shown in Fig. 4(b)–(c). We find that devices with the different
OSs produced totally different EM patterns when performing the
same app task, while devices with the same OS produced similar
EM patterns. For example, although the corresponding apps in
Fig. 4(b) and (a) come from different devices, their waveforms
are very similar due to using the same OSs. Furthermore, we
use Dynamic Time Warping (DTW) to compute the similarity
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Fig. 4. EM patterns obtained from three smartphones while launching different apps in cold- or hot-start manners.

Fig. 5. Magnetometer readings and corresponding spectrograms generated
while using various apps and in-app services.

Fig. 6. Magnetometer readings and corresponding spectrograms generated
while using multiple apps simultaneously.

of EM signals across different devices running the same apps.
The similarity is defined using the Similarity = 1− ddtw

max ddtw
. The

similarity value is between 0 and 1, and the higher the value, the
more similar it is. The results show that devices with the same
OS have an average similarity score of 0.73, while devices with
different OSs only have an average similarity score of 0.18.
This prompts us to train two classification models for each of
the mainstream mobile OSs (Android and iOS). Note that the
two models share the same architecture, but their parameters are
different.

D. EM Signals Involving In-App Services

EM signals also vary when use different in-app services
in the same app. Fig. 5 presents EM patterns and the corre-
sponding spectrograms generated while using WeChat (a so-
cial/communication app) and Taobao (a shopping app). The re-
sulting EM patterns show that the functional differences between
the apps result in different EM patterns. We can also see in Fig. 6
that the internal EM patterns can be distinguished according to

the in-app services. Taken together, these results indicate that
the EM side channel leaked information pertaining to app usage
behavior as well as in-app services.

E. EM Signals Associate With Execution of Multiple Apps

Multi-window schemes (e.g., split screens) allow multiple
mobile apps and services to run simultaneously. For exam-
ple, a user can play a game in one window while browsing
the web in another. However, the multi-window mechanism
does not change the app activity lifecycle; only the most re-
cently interacted app remains active (RESUMED state) at any
time [23], [24]. This means apps not being actively used do not
produce foreground EM interference. Background apps (e.g.,
music/video playback, downloads, or navigation) generate EM
signals, which may interfere with those from active foreground
apps. As shown in Fig. 6, the EM patterns and spectrograms
from multiple running apps resemble the superposition of EM
signals from each app, especially in the frequency domain.
The green/red/blue boxes in the spectrogram (Fig. 6) highlight
features for music playback, navigation, and web browsing,
respectively. This suggests the possibility of separating complex
EM signals into those associated with individual apps or in-app
services.

F. Other Factors Affecting Magnetometer Readings

1) Device Movement: Magnetometers in mobile devices
sense geomagnetic signals for electronic compasses. Changes in
device position or orientation affect the magnetometer readings.
Fig. 9 shows total magnetometer readings during user walking.
The blue line represents geomagnetic signal changes due to user
movement, while the red line shows EM signals generated by the
smartphone during app tasks. We observe that the geomagnetic
signal changes caused by movement exceed the EM signal
amplitude, indicating a significant impact on data preprocessing
(e.g., normalization). The dashed blue line in Fig. 9 represents
predicted geomagnetic field signals (see Section IV-A), which
can be used for geomagnetic fluctuation cancellation.

2) EM Noise From External Electrical Devices: Other elec-
trical devices (e.g., household appliances) also leak EM emis-
sions at levels that cannot be disregarded out of hand [25].
Theoretically, EM intensity drops off exponentially (rather than
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Fig. 7. EM signals generated by input of 10 PINs.

Fig. 8. EM signals generated when keyboard is opened or closed in four apps.

Fig. 9. Magnetometer readings obtained from mobile device while the user
was walking with and without a video app playing.

Fig. 10. Changes in amplitude of magnetometer readings at various distances
from appliances.

linearly) with an increase in distance. Fig. 10 presents a diagram
plotting the attenuation of EM intensity as a function of distance.
When the mobile device is ≥ 25 cm from large household ap-
pliances (i.e., the washing machine and the microwave oven),
the built-in magnetometer is unable to detect the EM signals
generated by these machines. In the case of appliances with low
EM emissions (i.e., the table lamp and the television), 5 cm is
sufficient to eliminate interference. Thus, unless the smartphone
is in close proximity to an operating electrical device, external
EM noise is negligible.

G. Decoupling the Features of Keystrokes

Inputting keystrokes, such as PIN, typically has a negligible
effect on the working state of most onboard electronic compo-
nents; that is, the corresponding EM signals are very weak. To
test this hypothesis, we collect EM signals from the screen and
other components while PINs are entered with the screen on.
As illustrated in Fig. 7, PIN input slightly alters the amplitude
of the EM signals. However, when we attempt to predict EM
signals using the formula (1) derived from the screen-off state,
we find that our predictions fail to capture any of the peaks
associated with PIN input. This suggests that the screen itself
holds substantial information useful for detecting PIN.

Considering that many input method apps change color upon
pressing an on-screen button to enhance user interaction, we
aim to detect the EM signals caused by these color changes
across different screen areas to identify keystrokes. As depicted
in Fig. 8, we initially detect the activation of the keyboard. As
shown in Fig. 8, PIN composed of digits from 0 to 9 generated
distinctive peaks, distinguishable from the noisy background.
The observed variations in EM signals enabled us to decode the
PIN.

III. THREAT MODEL

In this section, we present the threat model of the proposed
MagSpy system. We assume that the target victim has installed
an app designed for seemingly innocuous purposes, like chatting
or document editing. However, this app contains malicious code
designed to run covertly in the background. For this type of
attack, our analysis focuses on 50 mainstream apps available on
Google Play (for Android devices) and the Apple App Store (for
iOS devices). We envision the overall attack flow as follows:

Step 1: The user unknowingly downloads a chat app that
serves as a facade. Embedded within this app is functional-
ity that continuously reads data from the 9-axis IMU sensor–
comprising a 3-axis magnetometer, 3-axis accelerometer, and
3-axis gyroscope–while running in the background. This occurs
even as the victim uses other apps that may handle sensitive
information. Notably, the app does not request permissions to
access the IMU sensor data. The duration and frequency of this
background data collection are dictated by the operating sys-
tem’s specific constraints and settings. This issue of limitations
is detailed in Section VI-A.

Step 2: MagSpy collects historical EM signal data from the
50 most popular apps, updating the historical dataset promptly
with each app version update. This data is utilized to train
two OS-specific models that function as both app and in-app
service classifiers. Additionally, MagSpy gathers EM signal data
from PIN input to set parameters for CWT-based peak detection
models and to train Random Forest classifiers. The user selects
the OS information when installing apps, which means we can
assume the OS type is known.

Step 3: The disguise app continuously collects IMU sensor
data in real time and stores it locally to be processed when the
mobile device is idle. After identifying the apps in use, their
specific services, and PIN input details, MagSpy then uploads
this data to the attacker’s server.
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Fig. 11. The Processing pipeline of MagSpy with two sensors data as inputs
and three privacy information as output.

TABLE II
THE RESULTS OF CANONICAL REGRESSION ALGORITHMS ON GEOMAGNETIC

SIGNAL FITTING

IV. SYSTEM DESIGN

In this section, we present a comprehensive overview of
MagSpy, followed by technical details of each step. Fig. 11
depicts the processing pipeline of the proposed system. Initially,
in the preprocessing phase, data from the 3-axis accelerometer
and 3-axis gyroscope are utilized to adjust for the effects of ge-
omagnetic variations. Subsequently, the Cascade-LSTM model
is employed to identify the current in-app services, which aids
in classifying the mobile app. Concurrently, MagSpy detects
keyboard opening actions in real time in order to monitor PINs
input information.

A. Cancelling the Geomagnetic Offset

We first seek to resolve offset in the geomagnetic noise caused
by external factors, such as the user walking or changes in wrist
position. To characterize the influence of user movement, we
use the additional information of a 3-axis gyroscope and 3-axis
accelerometer. The output data is then evaluated using a num-
ber of regression algorithms: Autoregressive Integrated Moving
Average (ARIMA) [26], Seasonal ARIMA (SARIMA) [27],
Vector Auto Regression model (VAR) [28], Logistic Regres-
sion (LR) [29], Random Forest Regression (RF) [30], Support
Vector Regression (SVR) [31] and Multi-layer Perceptron [32],
the results of which are listed in Table II. MLP is a standout
among the seven methods based on its ability to capture linear
as well as nonlinear relationships, which made it particularly
well-suited to the interpretation of user movement and other

Fig. 12. Fitting results from accelerometer and gyroscope through MLP vs.
raw geomagnetic field data (x-axis).

external influences. Consequently, we employ the MLP model
to convert the data from the 3-axis accelerometer and 3-axis
gyroscope into meaningful geomagnetic field data. The MLP
network is structured with an input layer, four hidden layers
(consisting of 64, 64, 32, and 16 neurons, respectively), and an
output layer. Fig. 12 displays the real collected signals and the
geomagnetic signals synthesized with MLP.

After establishing the MLP model, we partition the EM signal
data into discrete time intervals utilizing a sliding window of
size w. For each segment, we mitigate the geomagnetic field
offset by deducting the predicted geomagnetic noise from the
total EM data recorded by the magnetic sensor. This process
yields a purified EM signal emanating directly from the com-
puting device. Subsequently, this refined signal is subjected to
Gaussian filtering and normalization to ensure its suitability for
analysis. These preparations ready the signal for progression to
the subsequent phase of processing.

B. App/In-App Services Classification

1) In-App Services Clustering: While users display varied
app usage patterns, their activities are constrained by the avail-
able in-app services. To categorize these services broadly, we
conduct cluster analysis on EM signal datasets from 50 apps.
The initial step involves gathering data from diverse app inter-
actions such as playing games on a browser, watching videos,
listening to music, etc. Following data compilation, we employ
the TSkmeans algorithm [33] for time-series clustering. Unlike
traditional clustering techniques like K-Means [34], TSkmeans
utilizes analytically derived iterative updating rules to optimize
an objective function, which enhances cluster search efficiency.
This method also assigns weights to different timestamps, im-
proving the clustering of time-series data by addressing the
limitations of relying solely on spatial distances. The extensive
historical data available in this study allows us to identify nine
distinct categories of in-app services, as depicted in Fig. 13.
For further precision, we manually label portions of the dataset
based on classification criteria similar to those used by Google
Play and the Apple Store. This aids in pinpointing the nearest
cluster centers. Each cluster center is named according to the
derived data, and these names serve to label the in-app ser-
vices. Essentially, these clustering labels are then applied to
reclassify the original data segments, facilitating the training
of the model used to categorize in-app services. The outcomes
of this classification process are detailed in the subsequent
section.
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Fig. 13. Clusters related to nine types of in-app service. The notation is as
follows: video/voice calls (Ca), text chatting (Ch), editing documents (ED), lis-
tening to music (LM), editing photos (EP), playing games (PG), surfing/reading
(SU), watching video (WV), and Others.

Fig. 14. CNN Structure.

2) Classifier Structure: Assume that we have obtained the
OS information of the attacker’s mobile device, then it is nec-
essary to select the corresponding app/in-app services classifi-
cation model. We develop a dual-level Cascade-LSTM method
for the classification of app and their in-app services. Including
the window length of the input EM signal allows this system to
handle the dynamics associated with human usage habits. The
proposed Cascade-LSTM framework is illustrated in Figrue 15.
This scheme includes two parts: 1) first level, extraction of in-app
services representations from each M -second time interval of
EM signals, and 2) second level, modeling of in-app services
over M ×N seconds and app type.

Feature extraction and classification are key to resolving clas-
sification problems, especially considering the reduced signal
characterization caused by hot-start. In our models, we apply a
layer for the extraction of similar features (based on CNN) and
a classification layer (based on LSTM), which are implemented
in two levels. We select CNN for feature extraction based on
its ability to capture local discriminative features. The five
feature vectors are then successively fed into the LSTM network
(i.e., in five separate steps). Finally, the LSTM network outputs
in-app service labels. We obtain N in-app service labels for
each M -second interval from EM signals of M ×N seconds.
In the second level, the same EM signal of M ×N seconds is
divided into N parts, which are fed into CNN to extract feature
vectors one by one. The corresponding in-app service labels
associated with each one-second time interval from the first level
are concatenated with each feature vector and then fed into the
LSTM network (in N steps), whereupon the LSTM network
outputs the app label.

3) Feature Extraction Layer: It is typical for a basic CNN to
employ a convolution layer in conjunction with batch normal-
ization. The key attribute of a CNN is the ability to alternate

Fig. 15. Structure of Cascade-LSTM.

between different processing units (e.g., for convolution, pool-
ing, sigmoid / hyperbolic tangent squashing, rectification, and
normalization). This ability makes CNN easier to obtain a better
representation of salient signals. Moreover, the deep architecture
makes it possible to stack multiple layers of processing units
to facilitate the characterization of salient signals at various
scales. The features extracted using CNN are task-dependent and
highly discriminative. Therefore, CNN can efficiently extract
representative features from EM signals with a high sampling
rate and large noise.

The details of the our CNN model are shown in Fig. 14. In each
CNN layer, asides with the basic Convolutional-2D structure,
batch normalization and activation function of ReLU are used
to train deeper network without suffering from the vanishing
gradient problem [35]. After a global pooling layer, all features
are joined together and fed to a dense layer to generate more
representative features. In our CNN design, we apply a set of
1D filters on the EM signals directly and abandon the Pooling
and Dropout layer in the network to retain the characteristic
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of EM signals [36]. Given M seconds of 3-axis EM signal
sequence x = [x1, x2, . . ., xM ], 1-sec 3-axis EM signal xi is
transformed to the CNN network in each time step. The output
of the convolutional layer can be written as:

Cr(t) = f

⎛
⎝

l∑
i=1

k∑
j=1

x(i+ s(t− 1), j)wr(i, j) + b(r)

⎞
⎠

where Cr(t) represents the tth component of the rth feature
map, s denotes the convolution stride, and wr and b(r) denote
the weights and bias of the rth convolutional filter [37].

One of the problems in CNN network is that the features
extracted from all filters of the previous layer share the same
contribution to the next layer, which can impair classification
tasks that are sensitive to feature importance, especially in
time-series classification. To address the problem, we apply
Squeeze-and-Excitation Network (SE-Net) to our network. SE-
Net can adaptively recalibrate channel-wise feature responses by
explicitly modeling interdependencies between channels [38].
Therefore, we use it to extract important feature maps and
emphasize the representation of the network.

SE-Net is composed of the Squeeze operation and the Excite
operation. The Squeeze operation is computed by:

z =
1

H ×W

H∑
i=1

W∑
j=1

u(i, j)

where z represents the target statistics, H and W represent the
height and width of the filter, and u represents the features
passed through a squeeze operation. And the excite operation
is computed by:

s = σ(W2∂(W1z))

where ∂ refers to the ReLU function,W1 andW2 are parameters
to limit the model complexity, and σ is a general activation
function (e.g., sigmoid, ReLU, tanh, and etc). Finally, SE-Net
outputs s� u, where � is the element-wise multiplication.
Using this structure, SE-Net enables the CNN network to capture
channel-wise dependencies and generate more representative
features.

4) Classification Layer: The LSTM networks have been
shown to model temporal sequences and their long-range de-
pendencies more accurately than original RNN model. In this
part, we apply LSTM network to our classification model.

LSTM layer treats Xi as input. The input of LSTM model at
time step i is the output at time step i− 1 along with new input
at time step i. At each time step, LSTM maintains a hidden
vector hs and a memory vector cs responsible for controlling
state updates and outputs as shown in Fig. 15, which can be
represented as:

hsi = LSTM(Xi, hsi−1, csi−1)

In each step, hs is sensitive to the input, while cs changes slowly
to maintain a long memory. This structure enables LSTM to
delivery long-time dependence of EM signals among different
time steps, which breaks through the limitation that CNN can
only extract local properties.

After a many-to-one LSTM layer and a softmax layer, y =
softmax(hsN ) serves as the output of the first level (in-app
service classification) and further is added to the feature vectors
of the second level (in this case, N=5).

For the second level (app classification), since different time
steps may exhibit different significance, while LSTM is known
to have difficulty in dealing with long term dependencies in long
sequences [39]. To address the problems, we apply attention
mechanism to leverage the important features of each time step.

An attention mechanism takes LSTM output sequence hsi as
input and computes a vector α = [α1, α2, . . .αT ] where T is the
length of vector hsi. [40] , which can be represented as:

αt =
N∑
i=1

f(hsi)

where f is a weighted function trained with all the other com-
ponents of the model. Then r = α� hsN serves as the output
of LSTM with Attention layer. Since αt integrates information
among different time steps, this structure acts as a feature filter
unit and can further enhance the representation ability of the
network.

5) Mitigate the Diversity of Users: As mentioned previously,
users differ in the way they use an app. In fact, when time
interval M is sufficiently small, even the EM signals from
users performing the same in-app service may differ due to
the differences in usage habits, such as typing speed. Thus, the
intervalM must be extended sufficiently to mask the differences
in the using behavior of most users. In this work, we increase
time interval M to enable the Cascade-LSTM model to mitigate
diversity in the behavior of users.

6) Data Augmentation for Background App Noise: The scale
of datasets on noise from background apps is limited by compu-
tational overhead. Thus, we develop a data augmentation scheme
to avoid over fitting and improve generalizability. [41] shows that
when multiple CPU cores work simultaneously, the EM signal
is the superposition of that when individual CPU works. Thus,
we select the EM signal, Bj , of a number of apps/services that
tend to run in the background, such as music players, file down-
loaders, navigation apps and various app background services.
This EM signal is added with the EM signal of other apps Xi

with a particular weight αi,j , as follows: X̂i = Xi + αi,j ×Bj .
The artificial app EM signal with noise from background apps
(i.e., X̂i) is then included in the dataset to improve model
performance.

C. Keystroke and PIN Input Detection

The PIN detection algorithm is designed to accurately identify
and classify PIN inputs from electromagnetic (EM) signal data
by leveraging a two-stage peak detection and classification ap-
proach. The primary goal is to ensure high precision in detecting
the specific moments when a keyboard is operated and accurately
identifying the input PIN values.

As described in Algorithm 1, the process of PIN detection
comprises two stages. In the first stage, peak-shaped signals
are identified using a Continuous Wavelet Transform (CWT)-
based peak detection algorithm [42]. For each detected peak,
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100 samples before and 100 samples after the peak’s maximum
point are captured, resulting in a total of 200 samples. These
samples are analyzed using a Random Forest classifier, which
determines whether the peak EM signal is associated with the
opening of the keyboard.

If the classifier confirms that the peak indicates the opening
of the keyboard, we proceed to the second stage. Here, another
round of peak detection is performed using the CWT-based
algorithm with adjusted parameters, such as prominence degree,
minimum distance between peaks, maximum peak widths, and
peak thresholds. For each newly detected peak, 50 samples
before and 50 samples after the peak’s maximum point are
captured. The captured samples are then processed by a second
Random Forest classifier with different hyperparameters, in-
cluding the number of estimators, tree depth, maximum features
per split, and maximum leaf nodes. This classifier identifies
individual PIN input values, ranging from 0 to 9.

By employing distinct parameter settings and classifier con-
figurations across the two stages, the system effectively distin-
guishes between different types of peaks and their associated
PIN inputs, thereby enhancing the robustness and accuracy of
the PIN detection process.

V. EVALUATION

A. Experiment Setup

Apps and Devices: Table III lists the 50 most popular apps on
the Google Play Store and Apple Store, spanning a variety of
representative categories. The experiments are conducted on 30
mobile devices, detailed in Table IV. These devices include 14
Android phones, 6 Android tablets, 7 iPhones, and 3 iPads.

Participants: We recruit 12 individuals (5 females) ranging in
age from 11 to 48 years to represent victims in our experiments.

Data Collection: We deploy an application on mobile de-
vices that continuously gathers data from the magnetometer,
accelerometer, and gyroscope in the background. The maxi-
mum sampling rate for these sensors varies depending on the
device model. Initially, we collect data from these sensors at
their maximum available sampling rates specific to each device.
Subsequently, we uniformly resample the data to 100 Hz to
standardize it for further analysis.

i) In-app services data collection: Our study focuses on nine
in-app services identified through clustering results. Participants
interact with apps that include at least one of these services for a
duration of 10 minutes, conducting sessions in various locations
and at different times.

ii) App data collection: Each participant is randomly assigned
to use one of the apps on three different devices. These sessions
are conducted in various locations and at different times to ensure
diverse data collection.

iii) PIN input data collection: 12 participants are instructed to
enter a series of 10 digits (ranging from 0 to 9) in random order
using five different input methods. These include interactions
with the device’s screen in portrait orientation using the left and
right thumb, as well as the left and right index finger, and in
landscape orientation using the right thumb. Each input session
lasts one minute and takes place in various locations at different

Algorithm 1: PIN Detection.

TABLE III
TOP 50 POPULAR APPS ON MOBILE DEVICES
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TABLE IV
30 MOBILE DEVICES USED IN THE EXPERIMENTS

times of the day. After each session, the input digits are manually
labeled to establish a baseline for accuracy. This procedure
is repeated multiple times, with each repetition considered a
separate sample for inclusion in the PIN input dataset.

Data Augmentation: During our experiments, we enhance
the training dataset through data augmentation by introducing
artificial noise that mimics the EM signals from background
apps. Specifically, we select apps categorized under Music,
Browser (with download manager), and Navigation to serve as
background apps. To assess the EM signals linked to the refresh
services of these background apps, we keep the device screen
on, activate the app’s background services, and collect data from
the magnetometer sensor. We then integrate these background
app signals, with intensities ranging from 0.2 to 0.6, into the
signals from other apps in our study. These artificially generated
EM signals are accurately labeled according to their original
categories and incorporated into the training dataset to enhance
the model’s ability to identify app signals in the presence of
background noise.

B. Methodologies Evaluation

This subsection examines the effectiveness of our proposed
Cascade-LSTM model for classifying apps and in-app services.

1) Time Interval vs. Classification Performance: Users typi-
cally exhibit significant variability in their behavior, even when
interacting with the same app and services. Consequently, we
adjust the window size M to accommodate these variations.
We perform a 6-fold cross-validation, where datasets from 10
randomly selected users are used for training, and datasets from
the remaining 2 users are designated for testing in each fold.
Fig. 16(a) displays the outcomes when the app-internal service
classification models are trained using various lengths of M .
When M is set at 0.1 seconds, the in-app services classifica-
tion model performs poorly, achieving only 70.8% accuracy.
Gradually increasing M enhances performance synchronously;
setting M at ≥ 2 seconds allows the classification model to
achieve an average accuracy of 98% with a small standard
deviation. This improvement is logical as a larger time inter-
val size encompasses more generalized behavior information
rather than specific discriminatory information. Therefore, for

Fig. 16. Impact of the length of time intervals M and N .

Fig. 17. Evaluation results of Cascade-LSTM.

subsequent evaluations, M is maintained at 2 seconds, based on
the assumption that there is minimal variation in app-internal
services over this duration. The window size N at the second
level (app classification) also influences the performance of
the proposed Cascade-LSTM model. Fig. 16(b) illustrates the
results when M is fixed at 2 seconds and N varies between
2 and 16. Notably, when N is set at ≥ 8, the Cascade-LSTM
model attains an average accuracy of 96% in app classification
with a small standard deviation. Conversely, when the time step
N is set at only 1, the model’s performance suffers significantly,
resulting in an average accuracy of only 60% and a large standard
deviation. Increasing the window sizeN to 10 steps substantially
improves performance, leading to an average accuracy of 96%
with a very small standard deviation.

2) Training Size and Converge Length: We vary the length
of training data of each app running on 30 devices, ranging from
1 minute to 10 minutes. The remainder of the dataset is used
for testing. The time step N is set at 8, and the time interval M
is set as 2. The results are presented in Fig. 17(a). When using
only 4 minutes for each app, we attain accuracy of 94%. When
using ≥ 5 minutes for each app, the accuracy range from 96.2%
to 96.5%. This implies that when user use an unknown app out
the range of app list of MagSpy and want to obtain the screen
time proportion of this app in the future, he/she could collect
5-minute labelled EM data of this app and upload it to the host
for re-training classification model.

When we use the whole 10-min training size, set the time step
N at 8 and the time interval M at 2, Cascade-LSTM achieve the
optimal training accuracy at 34 iterations, beyond which training
loss continued to decrease but training accuracy did not increase
any further. Thus, we halt training after 40 iterations to avoid
over fitting. These results are detailed in Fig. 17(b).

3) Comparison With Baseline Methods: The proposed
Cascade-LSTM is compared with six baseline classifiers (SVM,
Random Forest, CNN, LSTM, FCN [39], DRCNN [43]). As
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Fig. 18. Comparisons with baselines.

Fig. 19. Impact of number of training apps.

shown in Fig. 18, Cascade-LSTM demonstrates higher accuracy
in the app/in-app services classification task compared to base-
line algorithms, which can increase app classification accuracy
to 96.5%. Compared to the method used in [43], our approach
improves accuracy by 5.6%. We attribute this performance im-
provement to the superior capability of our method in extracting
and leveraging temporal features from magnetometer signals.

4) Impact of the Number of Training Apps: Considering the
thousands of app types in the market, we also sought to determine
whether the increasing number of training apps would decrease
the multi-label apps classification performance. As shown in
Fig. 19, the identification performance of MagSpy did decrease
with the the number of training apps increased, but it also began
relatively slowing decreasing or relatively stabilizing when the
number exceeded 25, regardless of applying to Android or iOS
phones.

C. Robustness Against Geomagnetic Noise

We evaluate the effectiveness of the proposed geomagnetic
offset signal cancellation method by eliminating the cancellation
step (i.e., Step 1in Fig. 11) and testing our trained model in six
real-world scenarios. The comparison results in Fig. 20 show that
the inclusion of preprocessing greatly improves the stability and
accuracy of app classification.

D. Robustness Against Background Noise

Fig. 21 shows the classification accuracy under the effects of
background apps. We can see that the trained model without
the data augmentation is unable to perform adequately while
background apps are running. On the other hand, with the data

Fig. 20. Performance of w/ and w/o canceling geomagnetic noise.

Fig. 21. Performance under background app interference. “Aug” indicates
data augmentation; “Bg” indicates background app noise in testing data.

Fig. 22. Influence of users’ extreme behaviors (e.g., continuous typing in game
apps) on app classification accuracy in 8 different apps.

augmentation, when a background app is running, the perfor-
mance of the proposed Cascade-LSTM dropped by less than
1%, regardless of the device. Overall, the proposed model is
proved to be robust against background noise. These results
also demonstrate that our proposed data augmentation technique
helps to prevent overfitting and improve the generalizability of
our model.

E. Users’ Extreme Behavior

The specific habits of users could have a profound effect
on the proposed system. For example, continuous typing while
using a Gaming app would prompt MagSpy to cluster the data
within the document editing category, thereby misclassifying
the app as well as the in-app services. It is possible to adjust
the windows of M and N (see Section V-B1); however, this
would be impractical if the total typing time are close to M ∗N .
As shown in Fig. 22, when users spend more than 15 seconds
typing (0.75M ∗N ) while using apps in the eight categories, app
classification accuracy dropped to 80%. This demonstrates that
MagSpy is subject to failure when it encounters non-standard
user behaviors. However, in another user study involving three
volunteers (Fig. 23), we record the time users spent continually
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Fig. 23. CDF of continuous typing time in non-text editing apps.

Fig. 24. The classification results of PIN detection. Top-1 to Top-3 results of
10 users are reported.

typing while using apps in a normal manner. Our results indicate
that most users do not spend more than 10 seconds typing. This
appears reasonable due to the fact that typing operations in gam-
ing, music, or surfing apps is meant for immediate interactions.
Thus, the proposed system proves robust to the habits of most
users.

F. PIN Detection Performance

We also design experiments to evaluate the proposed PIN
detection scheme. We begin by dividing the data from the 12
volunteers into a training set and a test set using the leave-one
method; i.e., for every 11 volunteers’ PIN inputs dataset used to
train the PIN classification model, the remaining volunteer’s PIN
input dataset is included in the test set. For each test dataset, the
top-K (K from 1 to 3) classification results are calculated in terms
of average precision, callback, and F1-score. Fig. 24 presents
the corresponding classification results. The proposed method
is able to classify PINs correctly within 3 predictions. This is a
clear indication of its effectiveness in the extraction of private
data from EM signals. Furthermore, the fact that MagSpy is able
to detect running apps as well as PIN input means that hackers
would be able to deduce when a user is performing a particularly
sensitive task (e.g., typing in the password of bank card) and
extract that information for financial fraud. Notably, even with
varying background illumination across different apps, signal
differentiation techniques can be applied to isolate changes
induced by PIN entry behaviors, thereby ensuring the stability
of detection.

The sampling frequency of the built-in magnetometer may
also affect the classification accuracy of our MagSpy. Fig. 25
lists the app classification accuracy and PIN detection accuracy
using data obtained at different sampling frequencies. We can
see that at 50 ∼ 100Hz , the accuracy of the system is close to
the theoretical upper bound, which means that MagSpy should

Fig. 25. Robustness against sampling rate.

Fig. 26. Influence of battery.

Fig. 27. Influence of brightness.

perform well on most devices. From another perspective, users
or companies can protect user privacy by limiting the sampling
rate of the magnetometer. Taking into account the performance
of its basic functions (e.g., direction estimation) and privacy
concerns, a threshold of 20 Hz is generally acceptable.

G. Other Factors

Many other factors could potentially affect the performance of
the proposed system, such as the battery level and screen bright-
ness (see Figs. 26 and 27). As shown in Fig. 26, a 90% decrease in
battery power led to a 20.6% drop in in-app classification, 16.7%
drop in app classification and a 27.3% drop in PIN detection.
This is probably due to the fact that the EM signal depends on
the availability of battery power (i.e., signal amplitude). When
the battery is low, the phone automatically switches to power
saving mode, in which the CPU operates at a lower frequency,
videos are not preloaded, and background services are turned
off. Under low brightness conditions, the accuracy of in-app
classification ranged from 97.4% to 93.5%, app classification
ranged from 96.2% to 92.8%, and PIN detection ranged from
83.2% to 33.9%, as shown in Fig. 27. This can be attributed
to the fact that app/in-app classification does not depend only
on screen-driven tasks, but rather focuses on CPU, storage and
wireless communications modules. In contrast, PIN detection
depends on changes in the colors in specific areas, such that a
decrease in intensity leads to a corresponding decrease in signal
strength.
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H. Resource Consumption

We also think it prudent to evaluate the power consumption
and required storage space of MagSpy, considering that it is
tasked with the real-time collection of data from the magne-
tometer, accelerometer and gyroscope as well as complex data
processing. We assume that the sampling rate was 50Hz and that
the user would take a break every hour. Under these conditions,
the data stored in one hour would be 5.3M Bytes, and data
collection consume around 62.9mJ; processing the data would
consume approximately 8mJ within about 0.9 seconds, and the
wireless transmission of classification results would consume
approximately 27mJ. In other words, MagSpy would consume
97.9mJ of power each hour, while accounting for 0.6% of the
CPU utilization, and 5.3M Bytes of storage space (note that
this storage space is constantly recycled). Overall, the resource
consumption of MagSpy should be too low for most users to
notice.

VI. DISCUSSION

In this section, we outline the limitations of the MagSpy
system as well as countermeasures against our system.

A. Limitations

The MagSpy system is capable of detecting user’s privacy
information with a high degree of accuracy; however, this re-
quires the continuous collection of data from the built-in sensor
in the background. Due to privacy issues, some OSs have placed
restrictions on apps running in the background. Our system is
able to run stably on Android platforms up to version 7.0 and iOS
11.0, due to the fact that they have no restrictions on background
apps reading these three sensors. This accounts for 45% of the
Android market [44] and 11.4% of the iOS market [45]. Note
however that Android 8.0 (14.3%) forces the background apps
to suspend after a period of time (often in few minutes) in order
to reduce energy consumption. Then all versions since Android
version 9 and iOS 12 directly prohibit the reading of sensor
data in the background. Nonetheless, there are many solutions
to deal with the problem. In order not to be forced to suspend in
Android 8.0, apps can apply for a “wake-lock” permission [46].
We also discover that devices being recharged can get rid of the
restriction. For Android 9 or iOS 12 (or above), applying for a
GPS permission is enough to keep our data collecting service
running in the background [47]. Experiments show that, with
these methods, MagSpy can continually collect magnetometer
signal data for analysis.

B. Countermeasures

There are some methods that could be used to prevent informa-
tion leakage via magnetometer disturbance. Physical shielding
using ferromagnetic materials is a straightforward approach to
reducing the susceptibility of sensors to electromagnetic activity.
However, mobile device manufacturers tend to disregard EM
leakage from electronic components in the pursuit of lighter
and thinner devices. Meanwhile, the standards for EM leakage
may still be too loose, so that EM leakage signals can be

used to infer the privacy behaviors of users when using mobile
apps. Explicit user permissions could be introduced to limit
access to magnetometers; however, it is likely that many users
would have to be informed of the privacy threats associated
with built-in sensors and many mobile devices are running on
outdated OSes [44], [45]. One final approach would be to limit
access to magnetometers immediately when app running in the
background.

VII. RELATED WORK

A. Electromagnetic Side Channel

In previous studies [18], [25], [41], [48], [49], [50], [51], [52],
[53], [54], [55], [56], [57], the EM side channel is exploited to
enable attacks on smartcards, FPGAs, and other mobile devices.
In [51], the EM signals emitted by laptops are detected using cus-
tomized antennas and a software-defined radio receiver for the
extraction of RSA and ElGamal keys. In [41], EM side-channel
signals are used to create a novel near-field communication
system between mobile devices. In [25], electric appliances are
characterized based on the EM radiation signals they emitted.
In [15], [16], [17], researchers exploit the reaction of magne-
tometers to EM activity to infer activities corresponding to the
launching of apps or opening of browser websites. In the current
work, we demonstrate the feasibility of using magnetometer
readings to infer the complete mobile app usage behavior, such as
the multiple simultaneously running apps (with corresponding
in-app service) and sensitive user actions (PIN input).

B. Other Side Channels

Side channels other than EM signals can be used to infer user
behavior in the usage of mobile devices: (i) Several researchers
have shown that power consumption traces (collected in the form
of sysfs files [58]) are highly correlated with CPU activity pat-
terns, and could therefore be used to infer the opening of apps [7].
However, the sampling rate for battery monitoring is generally
low (≤ 5Hz). (ii) Researchers have also employed data-usage
statistics (i.e., tcp packages, memory footprint, browser cache)
to infer user behavior [4], [12], [59]. Note however that accessing
data-usage statistics on mobile devices via the /proc file system
can only be achieved on rooted devices. (iii) Researchers have
demonstrated the efficacy of using built-in motion sensors to
elucidate the motion of users [60], [61], [62]. Researchers have
also utilized motion sensor data to infer when the user is tap-
ping and gesturing during data input [63]. In contrast, the EM
signals emitted by mobile devices provide valuable information
pertaining to app usage and user behavior.

VIII. CONCLUSION

This paper presents a novel attack scheme capable of cap-
turing the EM signals emitted by the built-in components of
mobile devices, and then deciphering current app usage, in-app
services, and key stroke information. The system comprises a
geomagnetic offset canceller, in-app/app classifier, which is a
Cascade-LSTM classifier with CNN-based feature extractor, and
PIN detection method via CWT-based peak detection algorithm
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and Random Forest classier. The proposed system is capable of
classifying app/in-app services types and key stroke information
in the noisy EM signals from 30 mobile devices running on the
50 mainstream mobile apps.
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