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Abstract
Speech recognition (SR) systems are used on smartphones

and speakers to make inquiries, compose emails, and initiate
phone calls. However, they also impose a severe security risk.
Researchers have demonstrated that the introduction of certain
sounds can threaten the security of SR systems. Nonetheless,
most of those methods require that the attacker approach
within a short distance of the victim, thereby limiting the
applicability of such schemes. Other researchers have attacked
SR systems remotely using peripheral devices (e.g., lasers);
however, those methods require line-of-sight access and an
always-on speaker in the vicinity of the victim. To the best
of our knowledge, this paper presents the first-ever scheme
in which SR systems are manipulated by human-like sounds
generated in the switching mode power supply of the victim’s
device. The fact that attack signals are transmitted via the
power grid enables long-range attacks on existing SR systems.
In experiments on ten SR systems, SINGATTACK achieved
Mel cepstral distortion of 7.8 from an attack initiated at a
distance of 23m.

1 Introduction

Speech recognition (SR) refers to systems that receive
and interpret the human voice to implement spoken com-
mands [22]. SR systems involve the translation of sound
commands into electrical signals, which are then converted
into coding patterns and sent back to the device in digital
format for execution. SR systems have recently been intro-
duced in mobile devices, smart speakers, and other consumer
electronics in conjunction with virtual assistants using artifi-
cial intelligence (AI), such as Apple Siri, Amazon Alexa, and
Google Assistant [26]. As a result, the global SR market is
expected to reach USD 27.1 billion by 2023 [29].

Nonetheless, SR systems pose a serious security risk, and
most are prone to failure when extraneous noise is misinter-
preted as the human voice [7, 12, 32, 41]. Sounds that are
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inaudible to humans (> 20kHz) have also been used to make
covert attacks [37,38,41]. Note that all such methods transmit
the attack sounds through the air. The rapid decay in signal
strength [5] requires that the attacking device be located close
to the victim (e.g., < 2m), thereby limiting the applicability
of such attacks. Some remote attacks on SR systems involve
controlling nearby devices like TVs to inject attacking audio
signals [40], or inject audio signals to a target microphone
by aiming an amplitude-modulated light at the microphone’s
aperture [30]. Note that those methods require costly devices
(radio transmitter or laser), make impractical assumptions (the
presence of a controlled speaker like an always-on TV near
the victim) [40], or are prone to inference (lasers require line
of sight access to the target device) [30].

It has been observed that the current change that occurs
when a computer changes its operating state can also cause
the switching mode power supply (SMPS) to generate sounds.
Thus, we hypothesized that current fluctuations in the power
grid could drive a victim’s SMPS to emit sound, which could
be used to attack SR systems remotely. This led us to develop
the proposed SINGATTACK system, which modulates signals
into the current to be transmitted via the same distribution
box to the victim’s device, causing the SMPS to generate
human-like voice commands. The attack is completed when
the sounds are captured and parsed by the SR system. The fact
that attack signals are transmitted via the power grid in the
same distribution box enables long-range attacks on existing
SR systems. Therefore, this paper presents a novel approach
to attack SR systems remotely.

In developing the proposed SINGATTACK system, we en-
countered three main challenges. First, the complexity of
human sounds (e.g., 39 features are extracted using standard
Mel-Frequency Cepstral Coefficients [24]) makes it challeng-
ing to use modulated current to generate human-like sounds.
Furthermore, SMPSs are prone to delays and high variability
in their responses to changes in current frequency. Finally, the
relatively weak signal injected into the power grid is highly
susceptible to interference [18] and generally too weak to gen-
erate sounds of sufficient strength to activate an SR system.
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Figure 1: Structure of a typical switching-mode power supply.
AC represents the alternating current and DC represents the
direct current.

In the current study, we developed a novel CPU modulation
scheme that uses switching frequency, duty cycle, the number
of CPU cores, minimum load allocation, and transmission
duration to generate fine-grained current signals. We also
modelled the relationship between modulated current and the
sounds emitted by SMPSs. This led to the development of a
reinforcement learning scheme to enable the adaptive gener-
ation of human-like sounds as reference to train the model.
Finally, we developed a scheme to enhance signal strength
and boost the signal-to-noise ratio (SNR) of the generated
sounds based on the circuit structure of the power grid.

Our contributions are summarized as follows:

• This is the first-ever account of a remote attack on SR
systems using SMPSs. The proposed scheme is unobtru-
sive and does not require external hardware or hardware
modification.

• This is the first study to model the relationship between
CPU modulation, current in the power grid, electromag-
netic fields, and generated sounds.

• A reinforcement learning scheme is used to learn human
voice characteristics to facilitate the adaptive generation
of human-like sounds.

• We synthesized a reference sound as the ground truth to
facilitate the generation of human-like sounds.

• We developed a scheme to enhance the strength of gen-
erated sounds.

• In experiments on 10 SR systems, the SINGATTACK
system achieved a Mel-Cepstral Distortion (MCD) of
7.8 from an attack distance of 23 m.

Disclosure: Since the proposed attack involves at least 10
commercial SR systems, such as Xiaomi, Samsung, Google,
etc., we have reported the vulnerabilities to these companies
for responsible disclosure.

2 Background

2.1 Principles of SMPS
Switching-mode power supplies (SMPSs) [27] are widely
used for the uninterrupted delivery of electrical power in appli-
ances, such as mobile phones, computers, and smart speakers,
due to their small size, lightweight, and high efficiency [35].

Fig. 1 illustrates the structure of a typical SMPS, including
the control circuit, filter, rectifier, capacitor, transformer, and
switch regulating element [16]. Note that the switch regulat-
ing element is the core element in an SMPS, which includes
switching transistors (T R) to turn it “ON” or “OFF”. When
T R is switched “ON”, the voltage across the inductor is equal
to the supply voltage. In this mode, the inductor accumulates
energy from the input supply, and the capacitor supplies en-
ergy to the load. No current is delivered to the connected load
at the output because the diode (D) is reverse-biased. When
T R is switched “OFF”, the diode becomes forward biased,
and the energy previously stored in the inductor is transferred
to the capacitor and load. The result is that the magnitude of
the inverter output voltage can be greater than, equal to, or
smaller than the input voltage following the switching duty cy-
cle. The steady-state SMPS output voltage VOUT is obtained

as follows: VOUT =VIN
−D
1−D , and D =

tON

tON + tOFF
where tON

and tOFF respectively indicate the time T R is turned on and
off in a given duty cycle. When the load changes (e.g., when
a computer is powered on), its SMPS changes the switching
frequency of the T R, such that the ON-and-OFF switching op-
eration is repeated at high speed to maintain a steady voltage,
thereby altering the switching voltage VOUT and correspond-
ing current.

2.2 Sounds from SMPSs
In the following, we consider sounds typically generated by
SMPSs, which can be traced to device load and CPU mod-
ulation. We also outline experiments aimed at verifying the
principle underlying this study. These initial experiments were
performed using a Dell OptiPlex7080MT desktop (attacker),
a DRV425 [31] magnetic sensor with an AD2 [13] (to collect
magnetic signals indicative of current at a sampling rate of
192kHz), and a Xiaomi 10 phone with a 96kHz microphone
(as a sound recorder).
Sounds caused by device load: The loads on a device can
cause its SMPS to produce “high frequency” sounds. As
mentioned in Section 2.1, SMPSs continuously switch be-
tween “ON” and “OFF” states to output steady voltage in re-
sponse to changes in load. This switching frequency (20kHz
∼ 6MHz) [20] caused by load change generates an alternating
high-frequency current, which produces a strong alternating
magnetic field, leading the magnetic core to vibrate and gener-
ating corresponding sounds. For example, even slight changes
in the shape of the magnetic core in inductors under an alter-
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Figure 4: Illustration of a simplified power grid topology.
Rv denotes the resistance value of the victim. The attacker’s
current I0 is embedded in victim’s voltage Ir.

nating magnetic field can cause the core to vibrate (see Fig. 2).
Furthermore, the mutual attraction of magnetized magnetic
cores inside the inductor can induce vibrations in the insulat-
ing materials within the gap (see Fig. 3). The periodic nature
of forces generated by the alternating magnetic field produces
periodic vibrations in these structures, resulting in acoustic
signals at the switching frequency (> 20kHz) [23]. There-
fore we refer to these sounds as “high frequency” sounds.
Similar phenomena can be observed in capacitors and trans-
formers. As shown in Fig. 5(a) and Fig. 5(b), we concur-
rently collected current and acoustic signals from the desktop
SMPS under load changes, making it possible to compare
high-frequency spectrograms (> 20kHz). We observed con-
sistent signal patterns regardless of load, which suggests that
the acoustic signal was generated by electromagnetic forces
causing the vibration of circuit components within the SMPS.
Sounds caused by CPU modulations: Similarly, as a special
kind of load, CPU modulations on a device can cause the
SMPS to generate both “high frequency” and “low frequency”
sounds. As mentioned in Section 2.1, switching current is
used to accommodate changes in load. For example, the CPU
switching between operating modes (sleep-and-on) at fre-
quency f generates a new frequency component f in the
current [33]. The resulting current change drives the SMPS
to work at another frequency, generating another frequency
component. In practice, the detectable modulated frequency
f generated by CPU is generally below 20kHz. Therefore, we

refer to it as “low frequency”.
To verify this assumption, we collected EMI and acoustic

signals from the attacker SMPS (while the CPU was being
modulated), intending to generate audible signals at various
frequencies, the results shown in Fig. 5(c) and Fig. 5(d). A
comparison of spectrograms revealed consistent variations in
frequency under the effects of CPU modulation, demonstrat-
ing that the current also caused the corresponding acoustic
signals. We also observed that CPU modulation generated
both low-frequency and high-frequency current components.
Considering the frequency response of the victims’ micro-
phones, SINGATTACK uses the “low frequency” sounds to
perform the attacks.

2.3 Analysis of current flow in the power grid
Here, we illustrate the mutual effects of current from multiple
devices (an attacker and a victim) connected to the same
power grid. A simplified illustration of a single-phase power
network is shown in Fig. 4. The current signal of the victim
(Ir) can be derived as follows:

Ir = (Uc− IrRr)/Rv = (Us− IR− IrRr)/Rv

= (Us− I0R−
N

∑
i=1

IiR− Ir(R+Rr))/Rv
(1)

where R is the resistance of the common line through which
all current flows, and Rr is the resistance of the line supplying
power directly to the victim. The current signal of the victim
Ir also includes the current signal of the attacker. This means
modulated current from the attacker can be transmitted to the
victim via the grid power network.

3 Preliminary study

As discussed in Sections 2.3 and 2.2, modulating the at-
tacker CPU led to the generation of switching current, which
caused the victim SMPS to generate an acoustic signal. The
same switching current could also be transmitted to the vic-
tim through a parallel power grid. To explore the potential
of using acoustic signals from an SMPS to attack SR sys-
tems, we designed various experiments aimed at answering
the following questions:

1) How do CPU modulation methods affect the current in
the power grid? 2) Is the current change induced by CPU
modulation sufficient to generate detectable sounds using the
victim’s microphone? 3) Are modulated sounds generated by
the SMPS stable over time? 4) Are generated sounds audible
(detectable) to humans? 5) Is it an EM signal or an acoustic
signal that causes the attack?

In order to elucidate how modulation methods affect the
current in the power grid, we examined the effects of four
typical CPU modulation methods on the duty cycle, switching
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(a) Current associated with operating
states.
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(b) Acoustic signals by various oper-
ating states.
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5 10 15

Time (s)

0

5

10

15

20

25

30

35

40

45

F
re

qu
en

cy
 (

kH
z)

Modulated 7k

Corresponding
high-freq of SMPS

(d) Sound of control CPU.

Figure 5: (a)-(d) Current and sound spectrograms corresponding to changes in the computer working state or CPU modulation.
The red dashed lines indicate high frequency signals, red solid lines indicate low frequency signals, and purple dots indicate
mark noise. (a) and (b) indicate the current and acoustic signals collected synchronously in various operating states. (c) and (d)
show the current and acoustic signals collected synchronously as the victim CPU was modulated at a frequency of 7kHz, (sleep
for 500ms and rest for 1 second; 10 cycles).
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(a) Switch frequency.
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Figure 6: (a)-(d) Current spectrograms under varying CPU parameters. (a) the CPU generated frequencies at 3,4,5,16kHz. (b)
the duty cycle was changed from 0.1 to 0.9 with the frequency fixed at 11kHz; (c) 1, 2 and 3 CPU cores were used with the
frequency fixed at 11kHz (0−6s), or with each core sending a different frequency (6−10s); (d) Modulation duration (100ms to
5ms) with the frequency fixed at 6kHz;

frequency, modulation duration, and CPU core usage. When
the CPU continuously switches between idle mode for dura-
tion tL and full workload for duration tH at frequency fc, the
duty cycle is defined as tL

tH
. In the experiments, we used the

same devices in Section 2.2.

To address Question 1, we applied Short-Time Fourier

Transform (STFT) on the collected signals and as shown
in Fig. 6(a), modulating the CPU to switching frequency fc
generated low- and high-frequency current components. Note
that the low-frequency component consistently matched fc.

As shown in Fig. 6(b), when the switching frequency was
fixed at fc and the duty cycle was varied, the low-frequency
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Figure 7: The efficiency of proposed side channel attacks. (a) lists the modulated acoustic signals (5kHz and 6kHz) obtained over
a period of 3 weeks (3 different days per week) under various loads. (b) shows collected modulated sounds of 5kHz and 6kHz at
3 different days of 3 weeks under different loads on the victim. (c) shows SNR in different distances, and the black dotted line
represents human audible ranges.
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Figure 8: Attack experiments in a sound or electromagnetic isolated environment. (a) Place the SR system in an acoustic foam.
(b) Only place the smart speaker in an acoustic foam. (c) Place the SR system in a Faraday cage. (d) Only place the smart speaker
in the Faraday cage.

current components still matched fc, and both components
increased in strength with an increase in the duty cycle. As
shown in Fig. 6(c) at 0−5s, the strength of the low-frequency
component was proportional to the number of cores being
used. As shown in Fig. 6(c) at 6−10s, using different cores to
generate multiple switching frequencies concurrently gener-
ated combined frequency components. As shown in Fig. 6(d),
the high-frequency component could still be observed when
the modulation duration was gradually decreased from 100ms
to 10ms; however, the low-frequency current became unrecog-
nizable. As shown in Fig. 6(a), the low-frequency component
was not as strong as the high-frequency component; however,
it was more strongly correlated to switching frequency fc.
Moreover, the low-frequency component varied over a wider
spectral range (3kHz∼ 16kHz), which contains richer infor-

mation. Therefore, we focused on the low-frequency compo-
nent and sought to combine multiple modulation methods to
facilitate the generation of human-like sounds.

To address Question 2, we used the devices introduced in
Section 2.2 as well as a Samsung S7 (sampling rate of 48kHz)
sharing the power grid of the attacker separated by a distance
of 8m. Fig. 7(b) presents a spectrogram of the acoustic signal
measured using the victim’s microphone while the attacker’s
CPU was modulated. Corresponding modulated frequency
components in the spectrogram indicate that changes in cur-
rent in the attacker’s system are sufficient to drive the victim’s
SMPS to generate detectable sounds.

To address Question 3, we repeated the experiment used
for Question 2 (only the modulated frequency was varied)
over three weeks, with measurements obtained on three dif-



ferent days each week. As shown in Fig. 7(a), the modulated
frequency components and corresponding acoustic signals
remained stable over time.

To address Question 4, our experiments revealed that the
attack sound was indeed audible, but it was not loud enough
to be noticed in most situations. The generated attack sound
of the SMPS is roughly 10cm from the microphone of the SR
system, so that the volume of the sound at the microphone
is 30− 40dB, and increasing the distance to 50cm led the
volume drop to 10−15dB (see Fig. 7(c)). Note that if a sound
is audible to humans, it must be at least 15dB. This means
that the attack sound will go unnoticed as long as there are no
people within 50cm of the SR system.

To address Question 5, we performed attacks in acoustic
foam (acoustic isolated) and Faraday cage (EM isolated),
and set four scenarios in the contrast experiment, shown in
Fig. 8. Results show that scenarios (a), (c), and (d) can achieve
successful attacks, while only (b) failed, suggesting that it is
the sound from the nearby SMPS that activates the victim’s
SR system, not the EM signal. To sum up, the signal path
of our system can be described as follows: CPU operating
state results in current changes, which then travel to the power
grid (Section 2.3), resulting in EM changes in SMPS of the
SR system. EM changes later drive capacitors and inductors
inside SMPS to vibrate and generate sounds (Section 2.2),
which are then captured by the microphone (Section 3).

4 Threat Model

As outlined above, it is possible to use CPU modulation in
one attacker’s device to attack another victim remotely. In this
study, we implemented a desktop (the attacker) targeting the
SR system of a smartphone or smart speaker (the victim). The
attacker aimed to inject voice commands into the power grid,
causing the victim’s SR system to execute. Some SR systems
authenticate voices before executing commands, whereas oth-
ers do not. We assumed that the attacker and victim were
connected to the same power grid, such as the same office
building or dormitory, which we defined as “remote”. In prac-
tice, they would be connected to the same distribution box
but with different power outlets. Current transmitted through
the power grid by the attacker could theoretically affect any
SMPSs on that power grid (see equation 1). The attacker
could modulate the signal to generate a current that causes
specific vibrations in the SMPS, which could in turn be used
to attack nearby SR systems. Thus, SINGATTACK does not
need root access to the attacking device.

Our study was based on four assumptions: 1) The attack
computer (desktop with multi-core CPU) has access to the
power grid used by the victim. 2) The attacker knows the
model of the victim device, and it is not in use at the time of the
attack. 3) The attacker has access to samples of the owner’s
voice. 4) When the victim’s device is not being charged, there
is a working SMPS in the vicinity (within 30cm).

5 Methods

5.1 System Overview
Fig. 9 presents an overview of the SINGATTACK system,
which is implemented in four steps. In step 1, SINGATTACK
collects voices of the owner of victim using a mobile phone.
The voice samples (referred to as “reference sounds”) are
then denoised and analyzed in terms of voice characteristics
to facilitate the synthesis of voice commands for muse in
attacking the SR system.

In step 2, SINGATTACK employs various CPU modulation
strategies, including frequency, amplitude, and combinations
thereof, to cause the attacker’s CPU to generate current com-
ponents containing rich information. The current components
are then injected into the power grid to drive the SMPS of a
mockup victim to generate sounds (referred to as “modulated
sounds”). Note that the mockup victim uses the same kind
of device as the actual victim, and the purpose of using the
mockup victim is to collect data for training models. A mobile
phone adjacent to the mockup victim was used to record the
modulated sounds.

In step 3, SINGATTACK employs a reinforcement learning
model (using reference and modulated sound as inputs) to
learn how to produce a human-like voice matching that of the
victim. MCD (Mel cepstral distortion) measures the degree of
similarity between the reference and synthesized voices, and
an MCD value below 8 indicates fidelity sufficient to ensure
a successful attack [1].

Finally, in step 4, we use the fine-tuned model to generate
attacking sounds. The victims’ SR system then processes the
sounds to extract the commands within and drives the victim
to execute corresponding commands. We will explain how
each step is implemented in the following sub-sections.

5.2 Reference sound generation
Reference sound represents the sound of the owner of the
victim. Generating usable sounds requires reference sound
while the owner is using the victim’s SR system. To avoid
the cost and difficulties collecting voice commands directly,
SINGATTACK collects samples of the owner’s voice during
daily activities (making phone calls, talking to others, etc.)
for synthesizing voice commands, so no specific commands
are required to be given by the owner.

5.2.1 Denoising

The performance of SINGATTACK depends on removing au-
dible noise from reference voice samples. Noise refers to
disturbances in the surrounding environment and those origi-
nating (e.g., fan vibration) inside the phone, such as the 9kHz
signal shown in Fig. 5(b). We filtered out the extraneous noise
using a denoising scheme based on variational mode decom-
position (VMD) [36], which has proven effective in the digital
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Figure 9: System overview of SINGATTACK. The red arrows indicate the direction that the modulated signal transmits.

signal processing of unstable noise sources. The optimization
objective in the frequency domain can be simplified as:

min
uk(ω)

{∥∑
k

uk(ω)− f0(ω)∥2
2 +α∑

k
∥ j(ω−ωck)uk(ω)∥2

2}

s.t. ∑
k

uk(ω) = f0(ω)

where the received sound signal f0 is mixed with noises ε(t).
Then the signal is divided into k narrow band signals (denoted
by uk), each of which has a different central frequency ωck.
The optimal solution can be achieved using the Lagrange
multiplier, followed by the Alternating Direction Method of
Multipliers (ADMM) algorithm [4] to find the saddle point.
In our experiments, we set k = 35, and ωck was uniformly ini-
tialized, with the result that the difference in center frequency
between every two initial modes was 240Hz, thereby ensuring
that weak periodic signals could be extracted. Moreover, we
set α to a significant value (e.g., 200,000) to impose a strict
restriction on the bandwidth of each mode.

5.2.2 Voice commands synthesis

The denoised reference voice samples can then be used to
generate voice commands, including activation commands
(e.g., “Hey Siri”) and control commands (such as “Call 911”
or “Turn on airplane mode” ). When implementing activa-

tion commands, SR systems authenticate the voice. Thus,
synthesizing activation commands requires reference voice
samples. SR systems do not authenticate the voice when im-
plementing control commands, so that the attacker can use a
Text to Speech (TTS) system to generate arbitrary commands
online [10]. We assumed that the attacker would be able to
record a few words spoken by the victim, but not necessarily
activation commands, such as “Hey Siri”. We aimed to syn-
thesize the desired commands using relevant phonemes from
other words in the reference recordings. There are roughly 44
phonemes in English, and “Hey Siri” uses 6 of them (i.e., HH,
EY, S, IH, R, IY). The fact that many words use the same as
“Hey”, “Si”, or “Ri” makes it possible to splice them together.
We first search the reference samples for phonemes (singly or
in combination) for extraction and assembly into the desired
commands. Then we tested the synthesized commands on the
mockup victim. Once activated successfully, they can be used
as reference sounds.

5.3 CPU modulation and current generation

This section outlines the means by which the amplitude and
frequency of the modulated current from attack devices are
used to generate complex current signals.



5.3.1 Current frequency modulation

As mentioned in Section 3, CPU switching frequency ( fc)
determines the frequency of sound emitted by the victim’s
SMPS ( fs), i.e., fs = fc. Generating current with a specific fc
requires that one of the cores in the CPU of the attacker switch
from full load to idle within a specific switching period 1/ fc.
As shown in Fig. 6(c), having each CPU core operate at a dif-
ferent switching frequency makes it possible to inject multiple
current frequencies into the power grid simultaneously. We
utilize sched_seta f f inity() and pthread_barrier_wait() to
implement above functions on the Linux platform. Libraries
with similar functionality are also available on the Windows
platform [34]. The former binds threads to specific cores to
enable precise control over the switching frequency of each
core. The latter is used to switch the status of each core from
full load to idle. The fact that all of these library functions
can be called up by a guest user allows the implementation of
SINGATTACK without root privileges.

5.3.2 Current amplitude modulation

In order to adjust the volume of generated sound, we introduce
three amplitude modulation methods based on duty cycle (θ),
instruction sets, and power consumption. 1) Duty cycle:
in a given switching period, tON indicates the time a core
operates under full load, and tOFF indicates the time during
which a core operates under idle. Note that tON +tOFF = 1/ fc,
and θ = tON

tON+tOFF
. Changes in the duty cycle affect only the

current intensity (i.e., there is no effect on the current fre-
quency). 2) Instruction sets: a full load state can be achieved
by making the computer perform loops continuously, such
that any changes in the instruction set within the loop body
can significantly affect the strength of the current generated
by the CPU. 3) Power consumption: the power draw of a
computer is mainly determined by the working state of the
clock frequency of the CPU. Note that unlike the first two
methods, this method simultaneously alters the strength of
current generated by all cores.

We have designed Algorithm 1 and 2 to inject attack cur-
rents into the grid using the above methods. In Algorithm 1,
The Transmitter controls the start/stop of the Worker accord-
ing to the frequency and intensity of the current required. The
Worker constantly switches between full load and idle under
the control of the Transmitter to ensure a specific current
can be injected into the grid. In Algorithm 2, the Manager
is responsible for assigning tasks when multiple attacking
devices exist.

The Transmitter requires the frequency (F⃗) and intensity
of current injected into the power grid (⃗I) as input. Note that
O⃗ denotes the optional set of instructions, and Tc is the time
required for frequency-stable transmission. The Transmitter
and Worker use sched_seta f f inity() to bind themselves to
specific cores. The Transmitter controls its Worker to change
from full load to idle state via pthread_barrier_wait(). The

Transmitter calculates the duty cycle (θ) and the required
intensity (o) to precisely control the intensity of the current in-
jected into the grid. θ determines how long the Worker needs
to work under full load and o determines which instruction
the worker executes at full load.

Algorithm 1: Pseudo codes for the Transmitter and
Worker which are responsible for controlling the
start/stop of the Worker and injecting specific fre-
quency and intensity currents into the grid, respec-
tively.

begin Transmitter
Input: Frequency and intensity of the signal: [F⃗ , I⃗]. The

set of different instructions executed by the
sub-threads: O⃗.

1 Adjusting the power consumption status according to I⃗;
2 Binding the main thread to a specific core:

sched_seta f f inity();
3 Creating sub-threads Workers to control cores’ work

state: createWorker();
4 Threads synchronization:

pthread_barrier_init(&barrierFirst,NULL,2);
5 pthread_barrier_init(&barrierSecond,NULL,2);
6 for each [ f , i] ∈ [F⃗ , I⃗] do
7 θ,o← calParameters(i);
8 switchPeriod(Ps)← 1e6/ f ;
9 cpuFullLoad← θ · switchPeriod;

10 synchronize o to Worker;
11 endTime← getTime()+Tc;
12 while getTime()< endTime do
13 Mark← 1;
14 pthread_barrier_wait(&barrierFirst);
15 while getTime()%Ps < cpuFullLoad do
16 do while;

17 Mark← 0;
18 pthread_barrier_wait(&barrierSecond);
19 while getTime()%Ps ≥ cpuFullLoad do
20 do while;

begin Worker
sched_seta f f inity();
while true do

pthread_barrier_wait(&barrierFirst);
while Mark do

do o;

pthread_barrier_wait(&barrierSecond);

5.3.3 CPU modulation using multiple desktops

The deployment of multiple computers concurrently can en-
sure that the modulated signal contains the required fine-
grained information. Based on differences in the intensity of
the current at various frequencies, we can assign frequencies



Algorithm 2: Pseudo code of the Manager which is
responsible for assigning tasks when multiple attack-
ing devices exist.

Input: Frequency and intensity of the signal: [F⃗ , I⃗]. The
number of available computers: N.

1 for [ f⃗ ,⃗ i] ∈ [F⃗ , I⃗] do
2 Clock synchronization with other N hosts;
3 [ f⃗ ,⃗ i]← sort([ f⃗ ,⃗ i]) by i⃗;
4 Divide [ f⃗ ,⃗ i] into N parts according to intensity;
5 Distribute the N parts to N hosts;

of similar strength to the same computer (Method 3 in Sec-
tion 5.3.2) to take full advantage of the differences in intensity
generated by differences in working state. Note that we can
use Network Time Protocol (NTP) to ensure synchronization
among multiple desktops.

Algorithm 2 is used to control multiple machines in a joint
operation, i.e., superimposing current signals, where [F⃗ , I⃗]
indicates the set of frequencies and intensities of currents.The
Manager assigns currents of similar intensity to the same
attacker to facilitate the modulation of currents. The attacker
will use Algorithm 1 to inject current into the grid.

5.3.4 Current enhancement

The intensity of the modulated current primarily determines
the effectiveness of the attack. We developed three methods
to enhance the overall strength of the modulated current. The
first method involves the addition of parallel resistors. As
shown in Fig. 4, a pure resistor (connected in parallel adjacent
to the attacker) generates current I1, which is superimposed
with current I0 (also generated by the attacker), thereby am-
plifying the intensity of the current injected into the grid. The
second method involves the attacker connecting resistors in
series to divide the voltage. By so doing, the SMPS of the
attacker increases the amplitude of their Pulse Width Mod-
ulation (PWM) circuits to ensure the stability of the supply
voltage, which increases the intensity of the current gener-
ated by the CPU. The third method involves connecting the
attacker to the AC via a series of connected UPS (Uninter-
ruptible Power Supply), which is meant to ensure a stable
power supply. Note that this is equivalent to introducing noise
reduction on the branch circuit used by the attacker, thereby
enhancing the relative strength of the current generated by the
CPU, which could increase the success rate of our attack.

5.4 Generating human-like sound

When combining different CPU modulation methods to gen-
erate human-like sounds, some problems must be considered.
Many parameters (like duty cycle, CPU core number, etc.)
must be adjusted, and the interactions among them can be very

Table 1: Adjustable modulation parameters and their range.
Duty cycle θθθ 0-1 Switching frequency fff 1−15kHz
Device number NNN 1-n CPU cores NNNccc 0-m
Time interval TTT ccc 1-100ms GPU utilization PPP 0-1
Load program HHH {flops,integer calculation,boolean, etc.}

complicated. Some parameters affect the current intensity of
a single frequency, whereas other parameters have effects
on multiple frequencies. The duty cycle can alter the ampli-
tude at a specific frequency or different frequencies. Some
parameters (e.g., CPU core number) have discrete values,
whereas others (e.g., load programs) have continuous values.
All these problems introduce challenges when seeking to gen-
erate human-like voices via CPU modulation. In this paper,
we employed reinforcement learning to generate human-like
voices via CPU modulation, wherein MCD is used as a metric
to control the model output.

5.4.1 MCD based similarity measurement

In speech recognition systems, Mel-Cepstral Distortion
(MCD) is commonly used to measure the degree of similar-
ity between sounds [19]. Differences in timing are corrected
using dynamic time warping (DTW) [25] to align the two
sequences, or by synthesizing test utterances using the “gold
standard” duration from the original speech (as opposed to
the duration synthesized by the model). SINGATTACK uses
DTW for sequence alignment.

For sound signal x, the extraction of MFCC involves pre-
processing the signal using a high-pass filter before perform-
ing a z-transform and adding a hamming window. Finally,
the signal is transformed into FFT representations as (Fx,λ)
where Fx is the i-th frequency component Fxi, and λi is
the corresponding power. The frequency is then processed
by triangular bandpass filters to its log form as mel(Fxi) =
1125× ln(1+Fxi/700) to make the sound more compatible
with human hearing. The power part λi is produced as fol-
lows: Cm =∑

N
k=1 cos[m×(k−0.5)×π/N]×λi,m= 1,2, ...,L

where N is the number of triangular band-pass filters, and L
is the number of extracted mel-scale cepstral coefficients. In
practice, N is set to 20 and delta energy and delta spectrum
(e.g., ▽Cm(t)) are added as new features. The final MFCC
features are expressed as the mc of dimension M. Given two
sequences of Mel cepstral features (reference feature mct and
modulated feature mce), MCD can be calculated as follows:

mcd(mct ,mce) = 10

√
2

ln10
1

T −1

√
T

∑
d=1

((mct
d−mce

d)
2) (2)

where T is a dimension of the Mel frequency-scaled cepstral
coefficients within a frame step length of m ms. In our system,
T was set to 25 and m was set to 5ms. An MCD value of
less than 8 indicates that the SR system cannot distinguish
between two sounds.



5.4.2 Reinforcement learning model

In modeling the problem of CPU modulation for rein-
forcement learning, we employed the proportional-integral-
differential (PID) method described in [2]. We first defined
a series of parameters to be adjusted and their range (see
Table 1). We denoted a parameter set comprising gener-
ated frequency f and intensity y as set A containing T pa-
rameters. When the agent selects hyper-parameter sequence
ar with probability p, the sequence ar is used to gener-
ate a set of sounds (X) and calculate the MCD value be-
tween X and the reference sound (R), which is used as a
reward to facilitate optimization of parameter set a. Deep Q-
learning can be modelled as follows: 1) Action space: a =
[a1,a2,a3,a4,a5,a6,a7]

T ∈ D7. All parameters were trans-
formed into Cartesian products of discrete spaces. 2) State
Space: S ∈ RN×T . The preprocessed voice signal matrix was
used as the state, and each state matrix contained an acous-
tic signal of a specified duration. 3) Q-Network: Net(S) =
{Q(S,a)|∀a ∈ D7}. The State matrix is the input, and the di-
mension of the output is the combined value of all action
spaces.

The goal of the algorithm can be expressed as follows:
J(θ) = maxE p(a1,θ)[R], where p indicates the probability
of the agent outputting sequence a1. J(θ) can be optimized
using the gradient descent algorithm, as follows:

▽θJ(θ) =
T

∑
t=1

E p(a1,θ)[R▽θ logP(at |at−1,θ)] (3)

We use the mean value obtained after sampling m times under
a fixed parameter θ as an unbiased estimate of the gradient
update:

▽θJ(θ)≈ 1
m

m

∑
t=1

T

∑
t=1
▽θ logP(at |at−1,θ)(Rk−b) (4)

where Rk is the MCD value of the k-th sampling, and b is
the fundamental value (defined as the moving average of l
sampling intervals), which is used to decrease the degree of
variance during training. The trained model is defined as Q.
The algorithm is terminated when N loss is not updated or R
reaches the defined MCD threshold, which was set to 8.

6 Evaluation

6.1 Experiment Setup

The attacker in this experiment was a Dell OptiPlex7080MT
desktop equipped with an 8-core i7-10700 CPU and 500 Watt
SMPS (Huntkey jumper500). As shown in Table 2, we em-
ployed 10 SR systems (4 phones and 6 smart speakers) as
victims. Note that we used the built-in microphones in the
mobile phones as receivers to record the daily voices.

Cell phones used in this experiment included the following:
Xiaomi 10 (Mi), OPPO R11 (OPPO), Samsung S7 (SmS),
and iPhone X (iPhone). The smart speakers are Tmall Elf X5,

Xiao AI Play, Amazon Echo, and Google Home, and their
SMPS models are shown in Table 2. A Xiaomi 10 phone was
used as a mockup victim to train universal models to attack
victims. Note that unless explicitly stated, all experiments in
Section 6 were done by: 1) collecting data of mockup victims,
2) training models, and 3) using models to attack the real
victims. Ten different attackers’ SMPSs are also shown in
Table 3. We generated ten commands using collected daily
voices, including one activation command and nine control
commands. As shown in Fig. 10, the electrical systems in the
two rooms were connected to the same distribution box. The
attacker was placed at five locations numbered 1 to 5. The
largest distance between attacker and victim was 23m.

6.2 Evaluation Metrics

MCD (explained in Section 5.4.1) was used to measure
the similarity between synthesized and actual voice com-
mands. Attack accuracy was used to determine the success
of an attack, which can be expressed as follows: Accuracy =
∑

10
i=1 ai/∑

10
i=1 ni, where a represents the time of successful

attacks, i represents the order of the command out of 10, and
n represents test times using a single command. The ten com-
mands are listed in Table 2.

Note that all commands were repeated five times, and max
accuracy is reported as the attacking accuracy. SNR was used
to compare the acoustic signal strength at various distances
and to guide the selection of parameter settings. SNR is de-
rived as follows: SNR = 10log(Psignal/Pnoise).

6.3 Micro Benchmark

6.3.1 CPU modulation parameters

Effective CPU modulation depends on basic parameters, in-
cluding the frequency range, duty cycle resolution (how many
different duty cycles the victims can distinguish), and the num-
ber of recognizable loads. Note that all victim devices must
be considered in establishing CPU modulation parameters
due to differences in frequency response between devices.

6.3.2 Denoising parameters

As mentioned in Section 5, the effect of VMD was affected by
narrow band number k and penalty factor α. We calculated the
average value of SNR sounds at ten frequencies (1∼ 10kHz)
before and after VMD denoising while varying only one pa-
rameter at a time. The results are presented in Fig. 11. As
shown in Fig. 11(a), the best SNR was achieved when k = 40,
as indicated by a 14dB improvement. As shown in Fig. 11(b),
when fixed k = 40, the best overall SNR was achieved when
α = 200k, as indicated by a further 10dB improvement.
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Figure 11: SNR boosting vs. parameters used in VMD.
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Figure 12: MCD vs. reinforcement learning parameters.

6.3.3 Reinforcement learning parameters

As mentioned in Section 5.4.2, the main parameters affecting
reinforcement learning are the moving window b and the
learning rate r. The moving window determines the adjusted
memory length, and the learning rate affects the amplitude of
each adjustment when the gradient drops.

We tested the magnitude of the MCD value of the modu-
lated sound and the natural sound under different parameter
settings. Fig. 12(a) shows that the best results were achieved
when the moving reference was 6. With b fixed at 6, the best
learning rate was 0.008, as shown in Fig. 12(b).

6.4 Overall Evaluation

6.4.1 Attack accuracy

Firstly, we verified the system’s efficacy with the attacker in
Location 3, such that the distance between the attacker and
victim was 9 m. Fig. 13 presents the accuracy as a function of

the number of desktop computers used in an attack using the
proposed SNR boosting scheme. Unless otherwise specified,
all other experiments also used SNR boosting schemes. Note
that accuracy was proportional to the number of attack devices
used. After five repeated attacks on ten victims, the accuracy
against a single victim reached 90%. The Samsung and Apple
phones achieved the highest accuracy due to their superior fre-
quency responses. Superimposing multiple desktops resulted
in 100% success against all ten SR systems.

However, multiple desktops or SNR boosting schemes are
not always required to implement a successful attack. Experi-
ments show that when the attacker and victims are in different
rooms (14-23 meters), the attacker can still attack 5 out of 10
SR systems using a single desktop without any SNR boost-
ing schemes, with an average accuracy of 74% out of the 5
attacked SR systems. Adding more desktops or SNR boosting
schemes can improve the success rate.



Table 2: Victims, the attack commands, and corresponding SMPSs.

No. Model SR System Common commands SMPS model SMPS power
1 Xiaomi 10 Xiaoai Xiaoai Tongxue/others MDY-10-EF 30W
2 Oppo R11 Oppo Navigation AK779 15W
3 Samsung S7 Bixby Turn on the light EP-TA20CBC 10W
4 iPhone X Siri Turn on the humidifier MHJ83CH/A 20W
5 Tmall Elf X5 AliGenie Open taobao.com CYLDA20-120200C 24W
6 Tmall Elf X5 AliGenie FaceTime 1234567890 CYLDA20-120200C 24W
7 Xiao AI Play Xiao AI Turn on airplane mode AD-0121200100CN-2 12W
8 Xiao AI Play Xiao AI Open AliPay AD-0121200100CN-2 12W
9 Amazon Echo Alexa Play music GP92NB 15W
10 Google Home Google Now Call 911 G2JXE 30W

Mi
OPP

O
Sm

S
Iph

on
e

TM
 1
TM

 2AI 1AI 2Ech
o
Hom

e
50

75

100

Ac
cu

ra
cy

 (%
) 1 DP

2 DP
3 DP
4 DP

Figure 13: Attack accuracy vs. number
of desktop computers used in attack.

Mi
OP

PO Sm
S

Iph
on

e
TM

 1
TM

 2
AI 

1
AI 

2
Ec

ho
Ho

me

6
7
8
9

10
11

M
CD

4 DP
3 DP

2 DP
1 DP

Figure 14: MCD vs. number of desktop
computers used in attack.

w/ SP 
w/ VR

w/ SP 
w/o VR

w/o SP 
w/ VR

w/o SP 
w/o VR

50
60
70
80
90

100

A
cc

ur
ac

y 
(%

)

Figure 15: Impact of surge protection
and regulator.

Table 3: Attacker SMPS.

No. SMPS model Power
1 Great Wall Shenwei 400W
2 Aigo G3 400W
3 Asus Tuf Gaming 450W
4 Hangjia Jumper500 500W
5 Antec VP450 450W
6 Antec VP300 300W
7 Segotep Zhanfu 300W
8 Xianma Gold 650W
9 Antec NE650 650W
10 Seasonic Core 500W

6.4.2 Similarity to actual human voices

We sought to determine whether the sound produced by the
power supply was sufficiently human-like to fool the SR sys-
tem. MCD was used to measure the degree of similarity be-
tween an actual human voice and sounds generated using
various numbers of desktop attack computers. Fig. 14 lists
the averaged MCD of the 10 commands, and we observed a
decrease in MCD when more than one device was used. Our
results revealed that using four desktop computers at a dis-
tance of 9 meters from the attacker was sufficient to achieve
an MCD of less than 8, demonstrating the system’s efficacy
in generating human-like voices.

6.4.3 Attack distance

To determine the effective range of SINGATTACK, we con-
ducted experiments with the attack computer array located
in various locations: Location 1 (1m), location 2 (5m), loca-
tion 3 (9m), location 4 (14m), and location 5 (23m). Note
that in this experiment, the victim was a Samsung S7. As
shown in Fig. 16 and Fig. 17, MCD was inversely propor-
tional to distance. At an attack distance of 23 meters (location
5), the accuracy of a single desktop attack computer dropped
to 60%, but using multiple machines can increase the attack
range. Using four machines at a distance of 23m resulted in
an MCD value of less than 8.0 with a corresponding accu-
racy of 100%. In addition, we also carried out experiments
in different rooms, physical isolation, different buildings, and
other environments. We put the attacker and the victim in two
environments: the same distribution box in different build-
ings (“same” in Fig. 19(a)) and different distribution boxes
in the same building (“different” in Fig. 19(a)). As shown in
Fig. 19(a), whose x coordinate axis is taken for the logarithm,
under the condition of different distances of the same distri-
bution box, although the distance is far (about 5-10m), the
success rate decreases slowly. However, under the condition
of different distribution boxes, even if the attacker and victim
are close (about 20cm), the success rate decreases fast. This
also shows that different distribution boxes (with different cir-
cuits and power grids) have a more significant impact on the
attack effect of SINGATTACK than different buildings (under
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the long physical distance and sound isolation environment).

6.5 Efficiency
6.5.1 CPU modulation

As mentioned in Section 5.3.4, using multiple machines im-
proved attack performance. Fig. 19(b) compares the effec-
tiveness of other modulation methods, including switching
frequency only (Switch), frequency modulation only (Duty,
no amplitude modulation) , using only frequency and cycle
duty (All, the SOTA work), using only load to generate ampli-
tude (Load) and the proposed method (Our). Note that none
of the other methods could produce human-like sounds at
distances exceeding 1m. The MCD of our modulation scheme
was at least 2 points lower than that of the SOTA system, with
performance benefits increasing as a function of distance.

6.5.2 Reinforcement learning

We evaluated the efficacy of the proposed reinforcement learn-
ing scheme in experiments using the Samsung S7 as a receiver
with five feature extraction methods: N frequency extraction
with max amplitude, classifying frequencies into subsections
for extraction of max frequencies, extraction of N MFCC or
mel-cepstral coefficients (SOTA work), and our method.

As shown in Fig. 19(c), the MCD of our method was 1.9-
4.1 lower than that of the SOTA work. This can be attributed
to the victim SR system’s feature extraction, which tends to
destroy the original characteristics of the received sound. The
fact that our method learns to produce a sound like a human
voice allows it to circumvent this problem.

6.5.3 Current enhancement

We evaluated the efficiency of the proposed current enhance-
ment scheme by measuring the increase of SNR provided by
different current amplification methods applied at various dis-
tances from the victim. In Fig. 18, S1-4 indicates adding 1-4
serially connected resistance, while P1-4 indicates adding 1-4
parallelly connected resistances respectively. U indicates the
inclusion of a UPS between the attacking computer and the

power grid. For example, US4P4 indicates combining these
amplification methods. Our results revealed that SNR could be
improved by increasing the series line and parallel resistance
and/or adding a UPS. For example, adding resistance using 4
electric kettles boosted the SNR by 9.8dB. Connecting four
sockets in series increased the SNR by 8.6dB. Adding a UPS
increased the SNR by 7.8dB. Note that implementing these
methods together increased the SNR by 18.6dB, making the
system far more robust to current variations in the power grid.

6.5.4 Different SMPS on sound quality

Table 3 lists the charger models of the attacker. In experi-
ments, we loaded different SMPSs to attack the same Xiao AI
Play. Results are shown in Fig. 20(a), where the success rate
of Hangjia is 100%, while the accuracy rate of Segotep Zhanfu
is only 40%. This is because Hangjia has a significant power
(500W+) and a strong sound signal (40dB+), so the attack
instructions are easier to be recognized by the speech recog-
nition system. Furthermore, it proved that different SMPS
significantly impact the attack success rate.

We also compared the impact of different SMPSs on the
victim (Xiaomi 10) side of different devices. For example,
when the mobile phone was close to different SMPSs at the
same distance (20cm), such as SMPSs for desk lamps, moni-
tors, desktops, routers, and other devices, the success attack
accuracy is shown in Fig. 20(b). Among them, desktops have
strong sound signals due to their high power. However, the
power of Xiaomi table lamp is small (< 20W). It has abundant
capacitors and other devices inside, so it is easy to produce
strong sound (Section 2.1), and the attack command is also
easy to be recognized by the speech recognition system.

6.5.5 Cross-distribution box

We added attack effects of the same and different distribution
boxes. In the experiment, the victim is a Xiao AI Play, and
the attacker is a Dell desktop computer. We placed the victim
at location A, and the computer at B, C, D, E, F, and G in the
power grid, where locations B, C, D, and A were in the same
distribution box, with distances of 1m, 5m, and 9m. Moreover,
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Figure 19: Impact of cross distribution boxes, modulation and feature extraction methods.
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Figure 20: Impact of SMPSs and cross-distribution box. X-axis in (a) denotes different SMPS models listed in Table 3. In (c),
victims and attacker are in the same distribution box only at locations B,C, and D.

A was in different distribution boxes from E, F, and G, with
distances of 1m, 5m, and 9m (through external sockets). The
results in Fig. 20(c) show that the effect of attacking the victim
at G is inferior (success rate <30%), and the attacks at F and
G are unsuccessful. However, both B and C exceed 90%. This
indicates that the attack effect is mainly related to whether the
attacker and victim are across the distribution box, and less
related to the distance between the attacker and the victim
equipment under the same distribution box. This is because
the attack current is mainly transmitted through the power
grid, and the sound in the air attenuates too fast.

6.5.6 Influence of different smart speakers

In the experiments, we employed 6 smart speakers (Xiao AI
Play × 2, Tmall ELF X5 × 2, Amazon Echo × 1, Google
Home × 1 ) as victims and only one computer as attacker
(Dell desktop, with a SMPS of Hangjia). The attack computer
was placed at location 5 and the victim was at location 3, such
that the distance between the attacker and victim was 7m.
Fig. 21 presents the accuracy against different smart speakers.
After thirty rounds of attacks with ten voice commands on
victims, the accuracy against a single victim reached 78%.

6.5.7 Influence of surge protection and voltage regulator

To explore the influence of surge protection and voltage regu-
lator, we followed the same experiment configuration shown
in Fig. 10 with/without using a surge protector socket and

voltage regulator, and the results are shown in Fig. 6.4.1. The
results suggest that using a surge protector socket does not
influence the attack accuracy. In other words, the frequency of
its SMPS can still be transmitted to other places through the
power grid. It is because the attacker can not generate an over-
load current through modulation. Generally, the triggering
current of surge protection needs to reach a certain threshold.
In contrast, the maximum current generated by the SMPS
is determined by SMPS, which can not reach the threshold.
Note that although some surge protector sockets are designed
to filter the current noise (< 1kHz) in the power grid, our
attacking current signal (3∼ 14kHz) will not be filtered.

As for voltage regulators, as shown in Fig. 6.4.1, we
achieved a slightly lower success rate with voltage regulators
in the power grid. It is because a voltage regulator’s function
is to maintain a constant voltage, which is generally designed
as a feed-forward or a negative feedback circuit. Note that
SMPS itself is a regulator (SMPS is also named “switch reg-
ulator”). Therefore, it will weaken the generated current in-
tensity, resulting in a decrease in success rate. However, we
can still implement a successful attack at most scenarios (95%
accuracy) with surge protectors and regulators.

6.6 Influence of noises

We also evaluated the effectiveness of SINGATTACK in var-
ious noisy environments, including acoustic noises in the
vicinity of the victim and current noise caused by extraneous
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Figure 23: Impact of noises from power
grid where attacker and victims connect.

devices connected to the same power grid. In this experi-
ment, we fixed the attacker at location 3 and calculated the
MCD between actual human voice commands and the sounds
generated by the victim’s SMPS.

Environmental noise: As shown in Fig. 22, we generated a
variety of noises in the vicinity of the victim, such as playing
music, talking by people around, or the sounds of other appli-
ances nearby. Under these conditions, victim devices varied
considerably in terms of MCD, with a discrepancy of nearly
0.5 between the Mi device and the iPhone. Overall, the hu-
man voice had the most profound negative impact because the
frequency pattern of the human voice is similar to the sounds
emitted by the SMPS. Nonetheless, the MCD in all cases was
less than 8, demonstrating the efficacy of SINGATTACK in a
noisy external environment.
Noise from the power grid: Any noise in the power grid can
cause the victim’s SMPS to generate sounds, which could
potentially corrupt the attack signature. As seen in Fig. 23,
we connected a variety of appliances to the power grid and
then calculated the MCD. The influence of the appliances was
ranked as follows: Refrigerator < Router < TV < Desktop com-
puter. Note that the TV and desktop computer are equipped
with CPUs capable of producing fine-grained changes in cur-
rent. Nonetheless, the MCD in all cases was less than 8, due
to the fact that most of the current components were in the
high-frequency range (Fig. 5(b)), which had little effect on
the sound signature produced by the SMPS.

7 Related Works

7.1 Attacks on SR systems

Considerable research has been devoted to evaluating the
security of SR systems [7, 12, 32, 41]. The attack systems
can be classified according to whether they use audible or
inaudible sounds.
Attacks using audible sounds: Some attack schemes use
audible sounds (< 20kHz) that humans cannot understand.
Kasmi et al. attacked smartphones by applying electromag-
netic interference to headphone cables. Mukhopadhyay et al.
demonstrated voice impersonation attacks on state-of-the-art

automated speaker verification algorithms based on a model
of the victim’s voice. Diao et al. designed a permission bypass
attack scheme using a zero-permission Android application
via phone speakers. Hidden voice commands [7, 32] with
audible and mangled audio commands have also been used to
attack SR systems.

Attacks using inaudible sounds: Other attack schemes use
inaudible sounds. Zhang et al. [38, 41] modulated voice com-
mands on ultrasonic carriers (> 20kHz) to achieve inaudibil-
ity. The nonlinearity of the microphone circuits can then be
used to facilitate the interpretation of modulated audio com-
mands by the SR system. In [37], the authors used electro-
magnetic interference to generate inaudible sounds by smart
speakers to enable the injection of commands at distances of
up to 2.5m.

One study exploited that a smartphone’s microphone and
USB charge port are physically close to each other on the
PCB board to generate a specific current while charging [15].
However, this attack can only be performed when the smart-
phone and other devices are being charged. By contrast, the
SINGATTACK system requires only an SMPS next to the vic-
tim. Note that all of the schemes mentioned above (audible
and inaudible) require that the attacker approach the victim
within 2.5m. By contrast, SINGATTACK can be implemented
at distances of up to 23m.

7.2 Remote attacks on SR systems

Researchers have also demonstrated remote attacks on SR sys-
tems. For example, the REEVE system modulates attack com-
mands into radio signals [40]. The LightCommands system
injects arbitrary audio signals into the victim’s microphone
using a laser [30]. However, those methods require costly
devices (radio transmitter or laser) and make impractical as-
sumptions, such as the presence of an always-on TV near the
victim [40], or line of sight access to the target device. By
contrast, SINGATTACK uses ubiquitous SMPSs to generate
sounds and does not impose unrealistic assumptions.



7.3 Attacks through the power grid
Researchers have also devised attack schemes that use the
power grid as a side channel. Depending on the nature of the
connection to the grid, these schemes can be categorized as
series and parallel power grid attacks.
Series power grid attacks: Researchers have demonstrated
that voltage signal measurement from a nearby outlet can
be used to identify the appliances being used by the victim
[8, 14]. Researchers have also tracked the websites the victim
visited based on analysis of current [9,39]. This approach has
also been used to detect anomalous events in embedded sys-
tems [6, 17, 21]. and identify human gestures based on body-
induced electric signals [11]. Nonetheless, these methods are
only possible when power sensors are connected directly to
the victim or a nearby outlet.
Parallel power grid attacks: To enlarge the attacking dis-
tance, Shao et al. [28] changed the CPU usage in a computer
to obtain passwords, which are then recovered by another
computer connected to the same parallel power grid. Zhang
et al. [42] remotely inferred APP usage on a computer con-
nected to the same parallel power grid. These works inspired
the current study; however, both of those schemes require
external sensors with a high sampling rate of ≥ 192kHz (e.g.,
magnetic sensors to analyze voltage). By contrast, SINGAT-
TACK uses ubiquitous SMPSs to enable attacks on existing
Commercial-Off-The-Shelf (COTS) SR systems without the
need for external devices or hardware modification.

8 Countermeasures

We also developed several methods by which to defend against
attacks comparable to that of SINGATTACK. A noise filter
could be inserted between the victim and the power grid
to filter out the attack current. Note that the attacking cur-
rent is mixed with the supply current; therefore, the filter
must be carefully designed to prevent it from affecting the
standard power supply. Researchers could seek to develop a
noiseless SMPS design (i.e., incapable of transmitting audi-
ble signals); however, replacing current established industrial
designs would be a daunting task, and even if it could be
achieved, the cost of upgrading existing equipment would
likely be prohibitive [3]. Ambient audible noise could be
generated near the victim to cover the entire frequency band;
however, this solution would simply be impractical in most en-
vironments. Specially designed software could be included in
SR systems to authenticate the source of the sound in terms of
orientation and intensity [26]. This method would be cheaper
and easier to deploy than the others.

9 Conclusion

This paper introduces a novel attack scheme targeting SR sys-
tems using sounds from SMPS. The proposed SINGATTACK

system modulates attack signals into current, which is then
transmitted through the power grid to the victim, where it
causes the SMPS to generate human-like voice commands.
To the best of our knowledge, this is the first ever account of
a remote attack on SR systems using SMPSs. Unlike previ-
ous works, the proposed scheme is unobtrusive and does not
require external hardware or hardware modification. We also
developed a reinforcement learning model to facilitate the
generation of human-like audible sound emissions. Finally,
we increased the signal strength to usable levels based on a
detailed analysis of the grid circuit structure. In experiments,
the MCD of all assessed devices was less than 8, demonstrat-
ing the proposed system’s efficacy in generating human-like
voices from attack distances of up to 23m. We also proposed
countermeasures by which to foil such attacks.

10 Discussion

In SINGATTACK, the victim is potentially vulnerable when
there are SMPS devices nearby: for example, TVs (built-in
switching power), desk lamps (external switching power), and
even the device’s own SMPS. Therefore, the abuse of these
adjacent devices may raise security concerns.

Many components in the power grid may affect the perfor-
mance of SINGATTACK. For example, the voltage regulator
exists in almost all SMPS, and its function is to maintain
a constant voltage. Therefore, it is necessary for the attack.
Note that some power ports are surge-protected; however, in
our attack, the current amplitude cannot reach the threshold
of triggering the surge protection.

Nonetheless, the SINGATTACK is still limited by several
issues. First, SMPSs used in laptop computers include a filter-
ing circuit that prevents the injection of current signals into
the grid. As a result, attacks of this type must be performed
using a desktop computer. Nonetheless, it should be possible
to modify a laptop SMPS to enable this kind of attack. For
instance, an LC filter circuit could be applied to the SMPSs to
retain a waveform signal in the 1∼ 20k Hz range [3]. Second,
the SINGATTACK system is based on the assumption that the
victim is adjacent to an SMPS. Nonetheless, we notice that
the victim may be within the audible range of a household
appliance, such as an air conditioner or a desktop computer.

Finally, the non-Gaussian frequency offset is commonly en-
countered in power grids. Nonetheless, the offset is relatively
small (0.2Hz), and therefore has little impact.
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