
1

MagDefender: Detecting Eavesdropping on Mobile Devices
using the Built-in Magnetometer

Abstract—The microphones and cameras on smartphones
are highly susceptible to eavesdropping by malicious ap-
plications (apps) and even the operating systems (OSes)
installed by unscrupulous phone vendors. Nowadays, several
third-party apps and newer OS versions are able to moni-
tor the working status of on-board devices via OS media
related APIs; however, so-called transplantation attacks have
proven highly effective in evading these measures. This study
explored the possibility of using the magnetometer built
into mobile devices to detect instances of eavesdropping via
the on-board microphones and cameras. Our results revealed
that on-board hardware (e.g., cameras and microphones) and
related modules (e.g., codec chip and CPU) leak electro-
magnetic (EM) emissions whenever audio or video data is
accessed. Nonetheless, this type of EM leakage is weak and
tends to be buried beneath extraneous EM signals (noise)
from other sources. We therefore adopted a deep learning
approach (pseudo-Siamese convolutional neural network) to
the analysis of EM signals. The proposed system, referred to
as MagDefender, enables the continuous monitoring of EM
signals in the background without the need for hardware
modification, root/jailbreak operations, or additional system
permissions. Empirical results demonstrate the efficacy of
MagDefender in recognizing instances of eavesdropping on
camera/microphones data, with average accuracy of 95.1%
when applied to devices on which it was trained, and 87.5%
on unseen devices.

I. Introduction
The availability of high-fidelity sensors and ubiquitous

internet connectivity has prompted the development of
numerous mobile applications (apps) and services that
rely on multimedia sensors. The cameras and micro-
phones built into mobile devices make it possible to cap-
ture and share image, audio, and video files. They have
also made it possible to develop voice assistants, speech
input, music identification, and face/object recognition.
Unfortunately, many malicious apps also use these sen-
sors in ways that violate user expectations and privacy.
The New York Times reported on apps using code from
a company called Alphonso, which makes it possible
to listen for audio signals indicative of user behavior
and preferences in order to more precisely target them
with advertisements [1]. Notable vulnerabilities have
also been identified in official apps. For example, it
was revealed that Apple FaceTime allowed unauthorized
access to iPhone cameras and microphones, even by
attackers who lack advanced hacking skills [2].

The example in Fig. 1 illustrates two online advertis-
ing schemes based on information obtained by eaves-
dropping on smartphones via the built-in camera or
microphone. A conversation with your friend on topic
X is first recorded by the microphone. This process can
be implemented by the operating system itself, a third-
party app in-stalled on the device, or the third-party

conversation
on topic X

Operating Systems/
Smartphone Vendors

expressions when surfing

Third-party
Applications

Third-party Libraries

Data Storage/
Analysis

Advertising
Publisher

Advertising Model

Is my smartphone
listening/watching me?

Real World Scenarios Secret Recording

Remote ServersPersonalized Ads

Process Data
Locally

Transfer
Results

Transfer Raw
Data

Attackers can process
data locally or transfer raw
data directly via Internet

Fig. 1: Working principle of the online advertisement scheme based
on information obtained by eavesdropping on smartphones via the
built-in camera or microphone.

libraries included in an app. After being processed and
filtered (locally on the device or on a remote server),
the data is fed into a profiling model, which advises
ad publishers about the types of ads to which you are
likely to respond favorably, such as those associated
with topic X. Another strategy uses the front camera to
monitor your expressions while looking at various items
or reading various news articles on a third-party app. As
above, the ad publisher could then use this information
to create a profile of you in order to select ads specific
to your tastes.

Motivation: Current mainstream operating systems
(Android and iOS) are equipped with mechanisms that
control access to hardware sensors. They also impose
restrictions on the degree to which background apps can
access multimedia sensor data. All Android installations
since Android 9 (accounting for 10.4% of the mar-
ket [3]) block background apps from accessing camera
and microphone data [4]. iOS 9+ prohibits background
camera usage, while permitting background microphone
usage with a red recording indicator appearing in the
upper part of the screen [5]. Note however that these
restrictions have no effect at all on the actions of the
operating system itself. It is a trivial matter for OS
providers and mobile phone manufacturers to access
private sensor data in the background without the need
for permissions. Furthermore, many malicious third-
party apps and libraries are able to evade restrictions
imposed by the operating system to gain access to sensor
data using a scheme referred to as a transplantation
attack [6]. Essentially, the attacker transplants the system
libraries required for a Media Server process into the

2

library for a malicious app, thereby giving it direct access
to camera/microphone hardware drivers (or hardware
interface libraries). Transplantation allows the attacker
to access the cameras or microphones without the need
to call up APIs, even on unrooted phones (see Sec. II-B).

A number of developers have implemented version
upgrades with indicators warning the user about apps
accessing the microphones and/or cameras. iOS 14
flashes an orange/green light whenever an app is using
these devices in the background [7]. The MIUI 12 modi-
fication of Android 10 includes an “application behavior
record” function in the security system detailing app
behaviors, such as access to mic/camera data) [8]. Third-
party apps, such as Access Dots [9] utilize Android
APIs (CameraManager.AvailabilityCallback and
AudioManager.AudioRecordingCallback) to indi-
cate the working status of the cameras and microphones
on most Android devices since Android 7+. Note how-
ever that all of the above solutions are based on OS APIs,
which makes it impossible for them to identify instances
of eavesdropping by the OS itself. Furthermore, they
are unable to identify malicious apps that does not use
system APIs to access camera/microphone data.

Our solution: In this study, we used the magnetometer
built into the mobile devices to detect instances of eaves-
dropping via the on-board microphones and cameras.
The proposed scheme, referred to as MagDefender, uses
the magnetometer to capture EM signals emitted by elec-
tronic components and then analyzes them for evidence
of an app accessing sensor data in the background. Our
development of MagDefender was predicated on the
assumption that all of the hardware modules involved in
collecting sensor data (e.g., microphone, camera, codec
chip, CPU, and RAM) work in a unique and consistent
manner. MagDefender can be implemented on any com-
mercial off-the-shelf (COTS) mobile device using any
version of any OS without the need for hardware modifi-
cation, root/jailbreak, or additional system permissions.

A number of daunting challenges had to be overcome
in developing the MagDefender system. First, the built-
in magnetometer is sensitive to all forms of magnetic
interference. These high sensitivity devices are able to
detect EM signals from electronic components in mobile
devices; however, they also detect geomagnetic signals,
which must be extracted from the overall readings. In
this study, we developed a geomagnetic signal cancella-
tion scheme uses support vector regression (SVR) and
IMU motion data (from the built-in 3-axis gyroscope
and 3-axis accelerometer) to deal with changes in the
geomagnetic signals caused by device motion. In an
effort to minimize power consumption, built-in magne-
tometers operate at a low sampling rate (50 ∼ 200Hz),
the resolution of which is insufficient for the extraction
of features required to differentiate among EM signals.
Furthermore, the EM signals generated while accessing
camera/microphone data are easily overwhelmed by the
EM signals generated during the execution of other app
tasks/services. Conventional classification algorithms are

unable to cope with these situations. Thus, our second
challenge was to design a deep learning model as an
alternative to conventional classification schemes with
the aim of deriving the information required to identify
EM emissions from only a few training samples when
encountering unfamiliar mobile devices for which the
system was not trained. Finally, we had to deal with
the fact that manufacturers vary widely in terms of
hardware configuration and sensor selection, which can
result in widely divergent EM emission patterns. We de-
veloped a pseudo-Siamese convolutional network (one-
shot learning) to determine whether the observed EM
signals (instance input) generated by the device contain
the EM signals generated only when accessing cam-
era/microphone data (exemplar input). Thus, only the
exemplar EM signals are required to identify instances
of eavesdropping, even when applied to an unknown
mobile device (i.e., not included in the training dataset).

The main contributions of this work are as follows:
• We conducted a pilot study to verify that the media

sensors and corresponding hardware modules in
mobile devices generate unique and consistent EM
signals detectable using the built-in magnetometer.

• We developed a third-party app solution capable of
monitoring the working status of the microphones
and cameras in mobile devices by analyzing mag-
netometer readings without utilizing any OS media
related APIs.

• We developed a Pseudo-Siamese CNN as a one-shot
learning method to identify instances of EM signals
generated when accessing camera/microphone data.

• We evaluated the efficacy of the proposed scheme
on 30 commercial Android and iOS devices (various
OS versions) in detecting eavesdropping events.
The proposed scheme achieved average accuracy of
95.1% when applied to devices on which it was
trained, and 87.5% on unseen devices.

II. Background and Vulnerability Analysis
In this section, we examine the operations of a mo-

bile device when an app requests camera/microphone
data. We also examine the vulnerability of solutions
that rely on OS media related APIs to monitor cam-
era/microphone usage. Note that this analysis focuses on
Android devices, and the same is true for iOS devices.

A. Android Media Service
In the Android environment, camera/microphone pro-

gramming is based on the client/server architecture.
The client refers to any app using the Android Cam-
era/Audio Service, whereas the server refers to the
Media Server. The workflow of a normal camera app
accessing the camera via the Android Camera Service is
presented on the left side of Fig. 2. The client process
is on a standard 5-layer structure. The Application layer
and the Framework layer are written using Java code.
The Runtime layer contains a Java Virtual Machine to

3

Linux Kernel

Hardware Abstraction
Layer (HAL)

Android Runtime
&

Native Core Libraries

Java API Framework

Applications

libcameraclient.so

libcameraservice.so

libhardware.so

libcamera.so

Activity/Service

CameraDevice/
CameraManager

Android Runtime(ART)

CameraClient CameraService

CameraHardware
Interface

Camera Driver

Binder

Normal Camera App (Client Process)

Mideaserver
Process

Activity/Service

Monitoring App (Client Process)

libcameraservice_transplanted.so

CameraManager.
AvailabilityCallback

CameraService

libcameraservice.so

libhardware.so

libcamera.so

Camera Driver

Mideaserver
Process

Android Runtime(ART)

Binder

Fig. 2: left) Workflow of normal camera app when using the Android Camera APIs;
right) Process involved in monitoring app to detect instances of camera device calls
by camera clients using the CameraManager.

libhardware.so

libcamera.so

Activity/Service

Android Runtime(ART)

Camera Driver

Malicious App (Transplantation Attack)

libcameraservice.so
CameraHardwareInterface

bridge.so

Linux Kernel

Hardware Abstraction
Layer (HAL)

Android Runtime
&

Native C/C++ Libraries

Java API Framework

Applications

Fig. 3: Model of transplantation attack involv-
ing stealthy use of camera device by avoiding
Android APIs [6].

execute Java code. This layer also includes native libraries
required for Interprosses Communication (IPC) (e.g.
libcameraclient.so). The client process does not interact
directly with the Camera device; therefore, the HAL
layer uses .so libraries instead of code to talk with the
camera driver. The Mediaserver process uses the lower 3
layers. The top Native Core Library layer contains system
libraries written in native code (.so libraries), which are
used to handle requests from clients, forward requests
to the HAL layer, obtain responses from the HAL layer,
and forward responses to the client. The HAL layer
deals with most of the tasks associated with Mediaserver
processes. Note that the camera driver is contained in
the Linux kernel layer used for Mediaserver processes.

Consider the following example. Any client process
that involves taking a photo must first establish a con-
nection with the Camera Service in order to access the
associated functions. The client first calls an Android
API using Java code. The Android API uses a system
library (libcameraclient.so) to send a CONNECT Binder
request to the Mediaserver process, which is then parsed
by the Camera Service according to type based on
the structure of the Binder data. If the request type
is CONNECT, then the Camera Service instructs the
Systemserver the check the client permissions. As long
as the client passes the permission check, the Camera
Service calls the CameraHardwareInterface to interact with
the camera driver in the Linux kernel. A notification
thread in the HAL layer monitors the camera driver
while awaiting camera-related events (e.g., focusing or
exposure operations). When the camera finishes taking
a photo, the camera driver sends an event signal to
the notification thread, which then transfers the image
data back to the Mediaserver from the bottom up by
calling the callback functions. Note that by this point, the
image data has already been compressed by the camera
driver into a pre-specified photo format (e.g., jpeg). The
Camera Service then forwards the image data directly
to the client process via the Binder IPC. Image data
received by the Camera Client in the Runtime layer is
then forwarded to the Framework layer, which posts it to
the screen for the user to see. Image data can be saved as

a photo file in the Application layer. The above workflow
involved in acquiring camera data using the Android
Camera Service is similar to the workflow involved in
acquiring audio data using the Android Audio Service.

The right part of Fig. 2 illustrates the working principle
used in the monitoring of apps. Camera usage can be
monitored using getSystemService("camera")
to retrieve the CameraManager in order to
interact with camera devices, in conjunction with
CameraManager.AvailabilityCallback (added in
API level 21) to determine whether a camera device
has been called by any camera API client via the
Binder IPC [10]. Microphone usage can be monitored
using getSystemService("audio") to retrieve the
AudioManager in order to interact with microphone-
related devices in conjunction with AudioManager.
AudioRecordingCallback to determine whether
any microphone-related devices are recording audio
data [11]. Note that these methods do not require
Manifest.permission.CAMERA or .RECORD_AUDIO.
Essentially, this is the means by which third-party apps
(e.g., Access Dots) monitor the working status of the
built-in cameras and microphones in real time. Note that
many Android phone vendors use a similar approach
to implement indicators of camera and microphone
operations.

B. Transplantation Attacks
Common attacks that involve capturing a photo on an

Android phone call camera-related APIs provided by an
Android SDK. However, this type of spy-on-user attack
is not stealthy, as it is unable to evade monitoring apps
(see the right side of Fig. 2). Sophisticated attackers
are able to take photos and record audio/video files
without calling Android APIs. These stealthy methods
are referred to as transplantation attacks [6]. The first
step in the transplantation attack model is to choose an
app that uses CAMERA permissions (e.g., QRCode Scan-
ner) for repackaging. Note that such apps are widely
available on Google Play, and repackaging and redis-
tributing them is generally straightforward. Fig. 3 illus-
trates the process after the malicious repackaged app has

4

0 5 10 15 20 25 30
Time (second)

0.0

0.1

0.2

0.3

0.4

0.5

N
or

m
al

iz
ed

 A
m

pl
itu

de
Do Nothing

0 5 10 15 20 25 30
Time (second)

0.4

0.5

0.6

0.7

0.8

0.9

N
or

m
al

iz
ed

 A
m

pl
itu

de

Record Audio Data

0 5 10 15 20 25 30
Time (second)

0.5

0.6

0.7

0.8

0.9

1.0

N
or

m
al

iz
ed

 A
m

pl
itu

de

Record Video Data

0 5 10 15 20 25 30
Time (second)

0.5

0.6

0.7

0.8

0.9

1.0

N
or

m
al

iz
ed

 A
m

pl
itu

de

Record Video&Audio Data

(a) Normalized EM signals when apps executing different tasks.

10 20
Time (second)

0

10

20

30

40

50

Fr
eq

ue
nc

y
(H

z)

10 20
Time (second)

0

10

20

30

40

50

Fr
eq

ue
nc

y
(H

z)

10 20
Time (second)

0

10

20

30

40

50

Fr
eq

ue
nc

y
(H

z)

10 20
Time (second)

0

10

20

30

40

50

Fr
eq

ue
nc

y
(H

z)

(b) Corresponding spectrum of the EM signals when apps executing different tasks.

Fig. 4: Magnetometer readings and corresponding spectra of EM signals generated by Huawei P20Pro during the execution of various tasks.

been installed on the victim’s mobile device. Basically,
transplantation attacks involve loading the Mediaserver
process into the address space of the malicious app,
thereby allowing the Java code in the application layer
to pass through the Framework layer and access the
libcameraservice transplanted.so in the Android Runtime
layer. Functions in the CameraHardwareInterface then call
functions in the HAL layer to talk with the camera
driver in the Linux kernel layer. Java Native Interface
(JNI) programming is utilized as a bridge to connect
Java code in the application layer with transplanted .so
libraries in the Runtime and HAL layers. The native
code is compiled as an .so file (bridge.so in Fig. 3).
Unlike normal camera apps, this type of malicious app
jumps over the Android API Framework and eliminates
the Binder IPC between Mediaserver processes by delet-
ing the libcameraclient.so library and Camaera Service
in the libcameraservice.so library. Under these conditions,
the monitoring app tasks/services mentioned above are
unable to detect eavesdropping behavior that involves
taking photos or recording video.

III. Attack and Defense Models
In this section, we first envision two attack scenarios in

which attackers use built-in cameras and microphones to
eavesdrop on victims. We then present a novel defense
model to alert the victim when the cameras and/or
microphones are being used.

Attack Scenarios. This study addresses two attack
scenarios involving (1) Unscrupulous mobile phone ven-
dors modifying the operating system kernel and related
libraries; and (2) Sophisticated attackers repackaging an
app (e.g., QRCode Scanner) that already has CAMERA
permissions to include malicious code for eavesdropping
without using OS media related APIs.

Defense Model. The fact that the above mentioned
attack strategies can easily evade the status monitoring of
Camera/Audio Service APIs means that software-based

defense models infeasible. In this study, we developed
a novel defense model, which uses the on-board mag-
netometer in mobile devices to detect electromagnetic
(EM) emissions generated whenever the microphone
and/or cameras are being used, even surreptitiously.

IV. Preliminary Analysis
Preliminary experiments were conducted to answer

three fundamental questions: i) When apps access cam-
era/microphone data, does the mobile device generate
EM emission signals that could be captured using the
built-in magnetometer? ii) If so, what are the charac-
teristics of these EM signals? iii) What other factors
affect magnetometer readings? Our answers to these
questions demonstrated the potential of using EM side-
channel sensing to detect instances of eavesdropping and
helped to elucidate the challenges involved in developing
this technology. In the following section, we describe
preliminary testing on the detection of EM signals emit-
ted by two representative smartphones (Huawei P20Pro
and iPhone 7 Plus). A proprietary app was installed
on both devices to enable the continuous recording
of background readings from the built-in magnetome-
ter using sampling rates of 100Hz (Huawei P20Pro)
and 100Hz (iPhone 7 Plus). For the sake of brevity,
we visualized only the total EM intensity in the time
and frequency domains, as calculated using readings
from the three-axis magnetometer, as follows: magt(t) =√
magx(t)2 +magy(t)2 +magz(t)2.

A. EM signals captured by magnetometer
The first experiment was meant to verify whether

mobile devices generate EM emission signals that can
be detected by the built-in magnetometer when an app
accesses camera/microphone data. Throughout the ex-
periment, the phone remained static on a table to mini-
mize fluctuations in the magnetometer readings caused
by variations in geomagnetic signals. Readings were

5

0 5 10 15 20 25 30 35 40 45
Time (second)

0.0

0.2

0.4

0.6

0.8

N
or

m
al

iz
ed

 A
m

pl
itu

de
Record Audio Data
PCM_8BIT, MONO, 11.025kHz

Record Audio Data
PCM_16BIT, STEREO, 11.025kHz

Record Audio Data
PCM_16BIT, STEREO, 44.1kHz

0 5 10 15
Time (second)

0.0

0.2

0.4

0.6

0.8

N
or

m
al

iz
ed

 A
m

pl
itu

de

Record Audio Data
and Transfer via Internet

0 5 10 15
Time (second)

0.0

0.2

0.4

0.6

0.8

N
or

m
al

iz
ed

 A
m

pl
itu

de

Speech-to-Text
Recognition

0 5 10 15
Time (second)

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 A
m

pl
itu

de

Huawei Xiao E
AI Assistant

(a) Magnetometer readings when Huawei P20Pro executing different audio tasks.

5 10 15 20 25 30 35 40
Time (second)

0

10

20

30

40

50

Fr
eq

ue
nc

y
(H

z)

5 10
Time (second)

0

10

20

30

40

50

Fr
eq

ue
nc

y
(H

z)

5 10
Time (second)

0

10

20

30

40

50

Fr
eq

ue
nc

y
(H

z)

5 10
Time (second)

0

10

20

30

40

50

Fr
eq

ue
nc

y
(H

z)

(b) Corresponding EM spectrum when Huawei P20Pro executing different audio tasks.

0 5 10 15 20 25 30 35 40 45
Time (second)

0.0

0.2

0.4

0.6

N
or

m
al

iz
ed

 A
m

pl
itu

de

Record Audio Data
PCM_8BIT, MONO, 11.025kHz

Record Audio Data
PCM_16BIT, STEREO, 11.025kHz

Record Audio Data
PCM_16BIT, STEREO, 44.1kHz

0 5 10 15
Time (second)

0.0

0.2

0.4

0.6

0.8

N
or

m
al

iz
ed

 A
m

pl
itu

de

Record Audio Data
and Transfer via Internet

0 5 10 15
Time (second)

0.0

0.2

0.4

0.6

0.8

N
or

m
al

iz
ed

 A
m

pl
itu

de

Speech-to-Text
Recognition

0 5 10 15
Time (second)

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 A
m

pl
itu

de

Apple Siri AI Assistant

(c) Magnetometer readings when iPhone 7Plus executing different audio tasks.

5 10 15 20 25 30 35 40
Time (second)

0

10

20

30

40

50

Fr
eq

ue
nc

y
(H

z)

2.5 5.0 7.5 10.0 12.5
Time (second)

0

10

20

30

40

50

Fr
eq

ue
nc

y
(H

z)
2.5 5.0 7.5 10.0 12.5

Time (second)

0

10

20

30

40

50

Fr
eq

ue
nc

y
(H

z)

2.5 5.0 7.5 10.0 12.5
Time (second)

0

10

20

30

40

50

Fr
eq

ue
nc

y
(H

z)

(d) Corresponding EM spectrum when iPhone 7Plus executing different audio tasks.

Fig. 5: Magnetometer readings and corresponding EM spectrum when using different mobile phones with different OSes to execute different
audio-related tasks.

recorded continuously while performing a variety of
tasks: doing nothing, recording audio data, recording
video data, recording audio and video data simulta-
neously. Fig. 4 shows EM signal fluctuations in the
time and frequency domains corresponding to functions
involved in accessing audio and video data. Note that
accessing audio and image data simultaneously resulted
in stronger EM emission signals, due to the superim-
posing of one signal over the other. Overall, the results
of this first preliminary test indicated that the built-in
magnetometer is well-suited to capturing EM emission
signals generated by mobile devices while accessing
camera/microphone data.

B. EM signals when accessing audio data
The second experiment was meant to characteris-

tize of EM signals generated by the smartphone while
executing a variety of tasks that involve the camera
and/or microphone. We also examined the differences
between the EM signals generated by different smart-
phone models. We first programed the devices to ac-
cess audio data using various parameter settings (i.e.,
sampleRateInHz, channelConfig, audioFormat),
while simultaneously recording the corresponding mag-
netometer readings. We then examined the EM signals
generated while executing apps that use audio data in
conjunction with other functions, like apps that record
audio and transmit data over the internet, speech recog-
nition apps, and system AI assistant services ’Siri’ on iOS
and ’Xiao E’ on EMUI.

The magnetometer readings in Fig. 5 revealed the
following: (i) The EM signals generated by the device
while recording audio data did not vary, despite changes
in parameter settings; (ii) The EM signals generated by
the device while performing complex tasks presented the
basic EM waveform (generated by accessing audio data)
in both the time and frequency domains. From this, we
surmise that regardless of the audio processing methods
employed by the attacker, it should be possible to detect
eavesdropping based on the corresponding EM signals.
A comparison of Figs. 5(c) with 5(a) and Figs. 5(d) with
5(b) revealed that different devices generated different
EM signals while performing the same task. This can no
doubt be attributed to the fact that manufacturers differ
in their selection of camera modules and other hardware
components (e.g., CPU, RAM), and corresponding soft-
ware (e.g., hardware drivers, interface libraries).

Huawei P20Pro and iPhone 7Plus both come equipped
with three built-in microphones. We observed no dif-
ferences in the EM signals generated while accessing
data streams from any of the three microphones sep-
arately or all of the microphones simultaneously. This
can be explained by the fact that the acquisition of an
audio stream involves the use of microphones, the audio
codec chip, the CPU, and RAM; however, the power
consumption of the microphones is proportionally very
low (50mW). The large power consumption of the CPU
and RAM is sufficient to produce EM emission signals
that dwarf the contribution of the microphone(s).

Magnetometer readings generated while simultane-

6

0 1 2 3
Time (second)

52

53

54

55
M

ag
ne

to
m

et
er

 R
ea

di
ng

s

Do nothing

Start Point End Point

(a) Huawei P20Pro Rear Camera

0 1 2 3
Time (second)

75

76

77

M
ag

ne
to

m
et

er
 R

ea
di

ng
s

Do nothing

Start Point
End Point

(b) Huawei P20Pro Front Camera

0 2 4 6 8 10
Time (second)

28

29

30

31

32

M
ag

ne
to

m
et

er
 R

ea
di

ng
s

Do nothing

Start Point
End Point

(c) iPhone 7Plus Rear Camera

0 2 4 6 8 10
Time (second)

53

54

55

56

57

M
ag

ne
to

m
et

er
 R

ea
di

ng
s

Do nothing

Start Point
End Point

(d) iPhone 7Plus Front Camera

Fig. 6: Magnetometer readings generated while capturing image
data (without preview) using various camera modules on different
smartphones. Each camera module performed the task of taking a
photo three times.

0 5 10 15
Time (second)

0.5

0.6

0.7

0.8

0.9

1.0

N
or

m
al

iz
ed

 A
m

pl
itu

de

Record Video with
Rear Camera

0 5 10 15
Time (second)

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 A
m

pl
itu

de

Record Video with
Front Camera

0 5 10 15
Time (second)

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 A
m

pl
itu

de

Face Recognition with
Front Camera

(a) Magnetometer readings when Huawei P20Pro executing different
camera-related tasks.

5 10
Time (second)

0

10

20

30

40

50

Fr
eq

ue
nc

y
(H

z)

5 10
Time (second)

0

10

20

30

40

50

Fr
eq

ue
nc

y
(H

z)

5 10
Time (second)

0

10

20

30

40

50

Fr
eq

ue
nc

y
(H

z)

(b) Corresponding EM spectrum when Huawei P20Pro executing differ-
ent camera-related tasks.

0 5 10 15
Time (second)

0.4

0.6

0.8

N
or

m
al

iz
ed

 A
m

pl
itu

de

Record Video with
Rear Camera

0 5 10 15
Time (second)

0.0

0.1

0.2

0.3

0.4

0.5

N
or

m
al

iz
ed

 A
m

pl
itu

de

Record Video with
Front Camera

0 5 10 15
Time (second)

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 A
m

pl
itu

de

Face Recognition with
Front Camera

(c) Magnetometer readings when iPhone 7Plus executing different
camera-related tasks.

5 10
Time (second)

0

10

20

30

40

50

Fr
eq

ue
nc

y
(H

z)

5 10
Time (second)

0

10

20

30

40

50

Fr
eq

ue
nc

y
(H

z)

5 10
Time (second)

0

10

20

30

40

50

Fr
eq

ue
nc

y
(H

z)

(d) Corresponding EM spectrum when iPhone 7Plus executing different
camera-related tasks.

Fig. 7: Magnetometer readings and corresponding EM spectrum
when using different mobile phones (different OSes) to execute
different camera-related tasks.

ously accessing multimedia sensor data in the back-
ground and other apps in the foreground.

C. EM emission signals when accessing camera data
Camera data is accessed when taking a photo (in-

stantaneous behavior) or recording video (steady-state

� �� �� �� �� 	�
� ��
������ ������

���

���

��

���

�
��
�
��
�%
��

�
�
��
�!"

��

�����!����

���$�����

���$���������
��������"��� ���$�����

���$���������
�������#����

���$�����

���$���������
!���������!"��

Fig. 8: Magnetometer readings generated while simultaneously ac-
cessing camera/microphone data in the background and running
other apps in the foreground.

2 3 4 5 6 7 8
Time (second)

0
10
20
30
40
50

Fr
eq

ue
nc

y
(H

z)

(a) Do nothing

2 3 4 5 6 7 8
Time (second)

0
10
20
30
40
50

Fr
eq

ue
nc

y
(H

z)

(b) Play game

2 3 4 5 6 7 8
Time (second)

0
10
20
30
40
50

Fr
eq

ue
nc

y
(H

z)

(c) Play game and recordg audio

2 3 4 5 6 7 8
Time (second)

0
10
20
30
40
50

Fr
eq

ue
nc

y
(H

z)

(d) Play game and record video

Fig. 9: EM signals generated by foreground running apps drown-
ing out the spectral characteristics of EM signals generated by
apps/services accessing audio and video data in the background.

TABLE I: Results obtained using canonical regression algorithms
for geomagnetic signal fitting. Mean Square Error (MSE) was the
metric used to evaluate how well the predicted EM fits the actual
EM, where a smaller MSE value is better.

ARIMA SARIMA VAR LR RF SVR
MSE 1.45 1.33 1.28 1.25 0.82 0.28

behavior). Thus, we first conducted an experiment to
characterize the EM emission signals generated while
taking a photo, respectively using the rear and front
camera modules. Note that the photos were taken with-
out preview in automatic mode, which is the scheme
preferred by many attackers. Fig. 6 presents the EM
emission patterns generated while taking photos using
an iPhone 7Plus and Huawei P20Pro. Overall, the EM
emission patterns were unique and consistent, regard-
less of whether the front or rear camera modules were
used. Here, the term unique refers to distinct EM signal
patterns resulting from the different hardware used in
the front and rear cameras. The term consistent refers
to the fact that the EM emission signals remained stable
over time.

We then conducted an experiment to characterize the
EM emission signals generated while recording video
data respectively using the front and rear camera mod-
ules. Note that video was recorded in automatic mode
without audio data or preview. As shown in Fig. 7, the
EM signal generated while accessing the data stream
from the front camera differed from the signal generated
while accessing the rear camera. Fig. 7 presents the
results of an experiment in which a face recognition
app (without preview) continuously accessed the photo
flow. The EM signals generated while running the face
recognition tasks presented the same basic EM waveform
(generated by accessing video data) in both the time and
frequency domains.

7

� ���� ���� ����
�������������

���

���

���

���

��	

���
�

��
�

�
��

��
�

�
��

���
��

������������
������������

(a) Setting

� ���� ����
�������������

���

���

���

���

��	

���

�
��

�
�

��
��

�

�

��
���

��

������������
������������

(b) Walking
Fig. 10: Fitting results from 6-axis IMU data based on SVR vs. raw
geomagnetic field data (x-axis).

� � �� �� �� �� ��
	�!"���������

�

��

��

�

�
���

�
�

���"��
����������
��

��� �
��
��!��
��� �$�#���#��

Fig. 11: SNR in magnetometer readings obtained with the
iPhone 7Plus at various distances from appliances.

D. Other factors affecting magnetometer readings
Other running apps/services on mobile devices:

Mobile devices are equipped with numerous electronic
components in addition to sensors. Theoretically, any
electronic component (e.g., CPU, GPU, LED display,
Wi-Fi module, or battery) could generate EM signals
while running. We previously demonstrated that the EM
signals generated by a device vary with the app/tasks
being performed. Thus, we sought to characterize the
EM signals generated while simultaneously running
eavesdropping operations in the background and the
legitimate apps running in the foreground: 1) Minecraft
(a mobile gaming), 2) an app accessing audio data, 3)
an app accessing the image data stream from the front
camera module, and 4) taking a photo using the front
camera module. Fig. 8 shows the readings obtained by
magnetometer throughout the experiments. Overall, we
determined that any app accessing camera/microphone
data generates a non-negligible EM emission signal,
which is superimposed on the EM emission signal gen-
erated by the foreground app. In Sec. V, we will intro-
duce the method developed for the extraction of EM
emission signals associated with the acquisition of cam-
era/microphone data from complex superimposed EM
emission signals. Note that characterizing and cancelling
out extraneous signals proved exceedingly difficult.

Device Movement: Magnetometers were first incorpo-
rated in mobile devices to measure changes in geomag-
netic field lines. This means that while a mobile device
is being used, any movement by the user could alter
the position and/or orientation of the device, resulting
in changes in the geomagnetic reading it produces. The
blue line in Fig. 10 indicates the magnetometer readings
(along the x-axis) generated by an iPhone 7Plus, while
the user was sitting and walking around. Note that
during this analysis, no tasks other than the acquisition
of magnetometer readings were performed. Overall, the
movement-induced variations in the amplitude of the ge-
omagnetic signal far exceeded the changes in amplitude
of the EM signal generated by the mobile device. This
is a clear indication that variations in the geomagnetic
flux can have a huge impact on data preprocessing (i.e.,
normalization). We also characterized the geomagnetic
fluctuations caused by user motion based on data ob-
tained using a 3-axis gyroscope and 3-axis accelerom-
eter. The output data was evaluated using a number
of regression algorithms: ARIMA [12], SARIMA [13],

VAR [14], LR [15], RF [16] and SVR [17], the results of
which are listed in Table I. Overall, SVR provided the
best performance. The red line in Fig. 10 presents the
geomagnetic signal predicted using SVR. By minimizing
the influence of geomagnetic signals, we were able to
obtain clean EM emission signals for subsequent EM
signal processing.

Nearby Electrical Devices: Other electrical devices
(e.g., household appliances) also leak EM emissions at
levels that cannot be disregarded out of hand [18]. The-
oretically, EM intensity drops off exponentially (rather
than linearly) with an increase in distance. Nonetheless,
we conducted a series of experiments to determine the
actual attenuation of EM emission signals as a function
of distance. We collected EM emission signals emitted
from various electrical devices using the built-in mag-
netometer in the iPhone 7Plus at various distances from
the appliances. We then plotted a corresponding SNR
attenuation diagram with distance, as shown in Fig. 11.
We found that when the mobile device was more than
20cm away from large household appliances (washing
machine and microwave oven), the built-in magnetome-
ter was unable to detect the EM signals the emitted.
In the case of small appliances (table lamp), 5cm was
sufficient to eliminate any interference.

V. MagDefender Design
A. System Overview

Our objective in this work was to determine from
captured EM signals whether an app/service was access-
ing multimedia sensor data. We also sought to identify
which multimedia sensor was being accessed (e.g., mi-
crophone or camera) and the means by which access was
achieved (e.g., taking a photo or recording video/audio).

The MagDefender system comprises two main compo-
nents for EM signal preprocessing and Pseudo-Siamese
Network analysis. Fig. 12 presents an overview of the
proposed system. EM signal preprocessing was meant to
eliminate interference due to variations in the geomag-
netic signal in order to obtain clean EM signals from the
magnetometer readings. It was also meant to disentangle
3-axis data into information pertaining to direction and
amplitude. The Pseudo-Siamese Network was meant to
determine whether the EM signals from the mobile
device contained components indicative of a request to
access camera/microphone data. It was also meant to
categorize sensor data according to its source and the

8

3-axis
magnetometer

3-axis gyro
3-axis acc

Directions:
x,y,z

Normalized
Amplitude

Obtain the EM
signal emitted
from the device

Exemplar
EM signals

Record audio/video

Instance
EM signals

Exemplar
EM signals

Instance
EM signals

Take a picture

Feature Feature Feature Feature

Contrastive Loss Contrastive Loss

Output

CNN1 CNN1 CNN2 CNN2

Output

Data Preprocessing: Cancel out geomagnetism

Pseudo Siamese Network I Pseudo Siamese Network II

Same structure &
Different weights

Same structure &
Different weights

Fig. 12: Overview architecture and processing pipeline of our
MagDefender.

manner by which it was accessed. Before outlining the
details of the MagDefender system, we will first outline
the process of data collection used to train the proposed
Pseudo-Siamese CNNs.

B. Data Collection
Training of the proposed networks began with the

assembly of a dataset comprising EM signals captured
from a variety of mobile devices. Specifically, the dataset
comprised the exemplar EM signals and instance (target
for identification) EM signals, which are subsequently
paired for use in training the pseudo-Siamese CNNs.

Exemplar Data Collection. We first collected Ex-
emplar EM signals generated when accessing cam-
era/microphone data. Results obtained in preliminary
experiments prompted us to focus on the following seven
types of exemplar EM signals:

• Accessing audio data. With the mobile device sta-
tionary on a table and all tasks disabled, we ran
a proprietary app requesting access respectively to
each RAW audio data stream (i.e., for each mi-
crophone), while using a 3-axis magnetometer to
record the corresponding EM signals generated by
the device. The resulting data were labeled using
the term “audio”.

• Accessing video(or & audio) data. With the device
stationary on a table and all tasks disabled, we ran
a proprietary app requesting access to video (w/
or w/o audio) data streams without preview, re-
spectively from the rear and front camera modules,
while simultaneously recording the corresponding
EM signals. We respectively labeled these EM sig-
nals using the terms “front-video”, “rear-video”,
“front-video-audio”, and “rear-video-audio”.

• Taking a picture. Using the same setup, we cap-
tured single photos (without preview), respectively

using the rear and front cameras and saved them
locally. We respectively labeled these EM signals
using the terms “front-pic” and “rear-pic”.

Instance Data Collection. The collection and labeling
of instance EM signals involved turning off permissions
to access the multimedia sensors (for all apps on the
mobile devices) and allowing users to operate the mobile
devices at will. The magnetometer readings were labeled
using the term “none”. Initially, we ran our proprietary
apps with various media-related types of tasks in the
background, while respectively running the above seven
programs, which were labeled using the terms “audio”,
“rear-video”, “front-video”, “rear-video-audio”, “front-
video-audio”, “rear-pic”, and “front-pic”, respectively.

C. System Description
1) EM Signal Preprocessing: EM signal preprocessing

involved the use of SVR and IMU motion sensor data (3-
axis accelerometer and 3-axis gyroscope data) to elimi-
nate interference associated with changes in geomagnetic
field lines. We then extracted information related to the
direction and amplitude of the magnetic field from the
raw 3-axis EM data. The details of data preprocessing
are presented in Algorithm 1, as follows:

Algorithm 1: Extraction of Direction and Ampli-
tude Information
Input:

• mag(t) = {magx(t),magy(t),magz(t)}, t = 1 . . . n.
• acc(t) = {accx(t), accy(t), accz(t)}, t = 1 . . . n.
• gyro(t) = {gyrox(t), gyroy(t), gyroz(t)}, t = 1 . . . n.

Output:
• Dir(t) = {dirx(t), diry(t), dirz(t)}, t = 1 . . . n (direction

information).
• Ampnorm = Ampnorm(t), t = 1 . . . n (normalized

amplitude information).
1 EM = mag − SV R(acc, gyro)
2 for t ∈ [1, 2, . . . , n] do
3 Amp(t) =

√
EMx(t)2 + EMy(t)2 + EMz(t)2;

4 end
5 for i ∈ {x, y, z} do
6 diri =

EMi
Amp

;
7 end
8 Ampnorm = Amp−min(Amp)

max(Amp)−min(Amp)
;

2) Pseudo Siamese CNN: Our primary objective was to
determine whether instance EM signals contained EM
signal patterns characteristic of tasks involved in access-
ing camera/microphone data. This could be achieved
using labeled instance data to train classifiers; however,
there are inherent differences in the EM signals gener-
ated by different mobile devices. Furthermore, it would
be impractical to collect EM signals for every mobile
device on the market just to create a training dataset.
Even if this were attempted, it is unlikely that the classi-
fier would perform well when applied to new (unseen)
devices. We therefore implemented a novel deep neural
network, referred to as a Pseudo-Siamese network, to
assist in EM signal matching and discrimination.

9

Input 4×500×1

x-axis

y-axis

z-axis

amplitude

…

…

…

…

Convolution

3×1×64

4×498×64

Convolution

3×1×64

4×496×64

Maxpooling

[4] …

Convolution

3×1×64

4×124×64 4×120×64

Convolution

3×1×64
Maxpooling

[4]

Flattening FC

Layer
FC

Layer

Output

Feature

128
512

…
…

…

…

…

…

…

…

…

…

4×122×64

…

…

…

…

…

7680

…

…

…

…

…

4×30×64

…

…

…

…

(a) Extracting features of steady-state eavesdropping type EM signals.

Input 4×300×1

x-axis

y-axis

z-axis

amplitude

…

…

…

…

Convolution

3×1×64

4×298×64

Convolution

3×1×64

4×296×64

Maxpooling

[4] …

Convolution

3×1×256

4×74×64

4×70×512

Convolution

3×1×512

4×1×512

Global Max

Pooling
Flattening FC

Layer
FC

Layer

Output

Feature

128

512

…
…

…

…

…

…

…

…

…

…

…

…

4×72×256

…

…

…

…

…

…

…

…

2048

(b) Extracting features of instantaneous eavesdropping type EM signals.

Fig. 13: CNN models for Feature Extraction Subnetwork.

Siamese Network. A Siamese network is a neural net-
work architecture comprising two or more subnetworks
with identical structures, parameters, and weights [19].
As shown in the upper part of Fig. 12, parameter
updating is mirrored across both subnetworks, which
are joined via a loss function at the top through the
computation of a similarity metric, such as Euclidean
distance, between representative features in each sub-
network branch. Siamese networks are meant to bring
the output feature vectors closer together (when dealing
with input pairs that are labeled as similar), and push
the feature vectors apart (when dealing with input pairs
that are labeled as dissimilar). Each branch in a Siamese
network can be seen as a function that embeds an input
image within a space. For example, the Siamese network
must bring together the output feature vectors for a pair
of input signals, where one comprises instance EM data
labeled “audio” and the other comprises exemplar EM
data labeled “audio”. Conversely, the Siamese network
must push apart the feature vectors for a pair of in-
put signals, where one comprises instance data labeled
“none” and the other comprises exemplar EM data la-
beled “front-video”. Exemplar data with labels would
automatically be collected for a new (not previously
encountered) mobile device.

Siamese networks are well-suited to situations requir-
ing verification involving a very large number of classes
and/or scenarios where examples of all classes are un-
available at the time of training. However, a classical
Siamese network sharing identical network structures
and weights would be ill-suited to dealing with EM sig-
nals containing a variety of components. In our scenario,
the right subnetwork (see Pseudo Siamese Network I
in Fig. 12) was tasked with filtering out EM signals

generated by other apps/services prior to the feature
extraction, while the left subnetwork was tasked with
extracting EM signal features directly. Thus, we settled
on a Pseudo-Siamese network with two branches sharing
the same structure but different weights.

Feature Extraction Subnetwork. Deep Convolutional
Neural Networks (CNNs) have been used with con-
siderable success in image processing and time-series
analysis. The effectiveness of this approach lies in its
ability to learn discriminative features automatically by
exploring the deep architecture at multiple levels of
feature abstraction without the need for a priori domain
knowledge.

In this work, 1D CNN [20] was used as the subnet-
work for feature extraction. Note that we had to deal
with two types of EM signal. One signal type remained
relatively stable over time (e.g., exemplar signals in the
training dataset labeled “audio”, “front/rear-video”, or
“front/rear-video-audio”) and one signal type was an
instantaneous impulse (e.g., exemplar signals labeled
“front-pic” or “rear-pic”). Due to the inherent differ-
ences between the two signal types, we developed two
1D CNNs with different structures for the respective
extraction of features from steady-state EM signals and
instantaneous impulse type EM signals.

The two model structures are respectively illustrated
in Fig. 13(a) and 13(b), with many of the details sup-
pressed for clarity. The first 6-layer CNN model is de-
noted as Conv(64)−Conv(64)−Maxpool[4]−Conv(64)−
Conv(64)−Maxpool[4]−Flattening−FC(512)−FC(128).
Each convolution layer has 64 filters, the first Fully Con-
nected (FC) layer has 512 neurons with ReLU activation,
and the second FC layer has 128 neurons with linear
activation. Two Maxpooling layers are used to reduce

10

the input dimensions by 1/4. The second a 6-layer CNN
model is denoted as Conv(64)−Conv(64)−Maxpool[4]−
Conv(256) − Conv(512) − Globalpool − Flattening −
FC(512)−FC(128). The first two convolution layers have
64 filters, the third convolution layer has 256 filters, and
the forth has 512. We replaced the second Maxpooling
layer with Global Max Pooling in order to deal with
instantaneous impulse type signals and thereby capture
the activation along the time dimension.

Loss Function. The proposed network was optimized
using a cost function capable of distinguishing between
pairs. Specifically, the cost function was meant to keep
matched pairs close, and ensure that unmatched pairs
were separated in Euclidean distance by at least margin
m computed in the embedded feature space. This was
implemented using the margin-based contrastive loss
function proposed in [21], which is defined as follows:

L(s1, s2, y) = α(1− y)D2
w + βymax(0,m−Dw)

2 (1)

where s1 is the exemplar EM signals, s2 is the instance
EM signals, and y is a binary indicator function denoting
whether the two inputs belong to the same class; α and
β are two constants and m is the margin equal to 1 in
our case. D2 = ||f(s1;w1)− f(s2;w2)||2 is the Euclidean
distance computed in the embedded feature space, f
is an embedding function that maps 4-dimension EM
signals (3 for directions and 1 for amplitude) to a real
vector space through CNN, and w1 and w2 are the
learned weights of each subnetwork. Unmatched pairs
contribute to the loss function only if their distance is
within margin m. This loss function brings matching
pairs closer together in the feature space and moves
non-matching pairs apart. Obviously, negative pairs with
a distance exceeding the designated margin would not
contribute to the loss (second part of Eq. 1).

3) Training and Testing:
Training. Two pseudo-Siamese networks were

trained. The first network used the subnetwork in Fig.
13(a) with a training set derived from the collected
dataset described in Sec. V-B, which included 20000
matched pairs for each label (“audio”, “front/rear-
video”, and “front/rear-video-audio”) with 60000 un-
matched pairs selected at random. The second network
used the subnetwork in Fig. 13(a), with a training
dataset that included 20000 matched pairs for each label
(“front/rear-pic”) and 40000 unmatched pairs selected
at random.

Both of the Pseudo-Siamese Networks were trained
from scratch in an end-to-end manner using a batch size
of 64 pairs per iteration. The weight parameters (i.e.,
filters) used in the networks were initialized uniformly
in accordance with the protocol outlined in [22]. The gra-
dients related to the feature vectors in the previous layer
were computed using the contrastive loss function and
back-propagated to the lower layers of the network. Once
all of the gradients in all of the layers were computed,
mini-batch stochastic gradient descent (SGD) was used

TABLE II: Summary of mobile devices used in experiments.

Category Device List
Training
(20)

Huawei Nexus 6P, Huawei P10, Huawei P20 Pro,
LG G7, LG V40, Samsung Galaxy A7, Samsung
Galaxy S8, OnePlus 7 Pro, Xiaomi Redmi K20
Pro, Xiaomi Mi 8, Moto Z2 Force, Huawei Pad
M5, Xiaomi Pad 4, iPhone 11, iPhone XS Max,
iPhone 7 Plus, iPhone 6S, iPad 2018

Testing
(10)

Samsung Galaxy S7, Huawei Mate 9, Xiaomi Mi
6, LG V30, iPhone X, Samsung Galaxy Tab A
T510, Samsung Galaxy Tab S4, iPhone 8, iPhone
6, iPad Air2

to update the parameters of the network. Specifically,
we employed the adaptive per-parameter update strategy
referred to as RMSProp for the updating of weights [23].
The decay parameter for RMSProp was fixed at 0.95
(in accordance with previous works) and the margin
for the contrastive loss function was maintained at 1.
Training was performed through 20 epochs using an
early stopping strategy based on saturation of the val-
idation set performance. The initial learning rate was set
at 0.002 and reduced by a factor of 0.9 following each
epoch. The entire framework was implemented using
Keras library with TensorFlow as the backend. Training
using a GeForce GTX 1070 required 6.8 hours to finish
the 20 epochs for each Pseudo-Siamese Network.

Testing. During the testing stage, we first paired each
instance EM signal with the five labeled exemplar EM
signals and passed on the results to the corresponding
Pseudo-Siamese Network. Specifically, we divided the
instance EM signal stream into segments of 5 seconds
to match the duration of the “audio”, “front/rear-video”
and “front/rear-video-audio” exemplar EM signals. We
then respectively paired the segmented instance signal
with the three exemplar signals using the first trained
Pseudo-Siamese Network. In a parallel operation, we
divided the testing EM signal into segments of 3 sec-
onds to match the duration of the “front/rear-pic” and
then paired them with the two exemplar signals using
the second trained network. When all of the exemplar
signals had been paired, the final results were obtained
by determining whether the testing EM signals con-
tained EM signals associated with requests to access
camera/microphone data.

VI. Evaluation
A. Experiment Setup

Mobile Devices: Table II lists the thirty mainstream
mobile devices with different OS versions as represen-
tative examples (Android and iOS) in the experiments.
Twenty of the devices were used to train the proposed
MagDefender system, and ten were used to evaluate the
performance when applied to new (i.e., unseen) devices.

Participants: We recruited ten users (4 females), each
of which was allocated three mobile devices.

Training Dataset: We collected and labeled the EM
dataset using the methods outlined in Sec. V-B.

Testing Dataset: The testing dataset included 1) exem-
plar EM signals from each mobile device and 2) actual

11

0 1 2 3 4 5 6
Time Interval (second)

40
60
80

100
A

cc
ur

ac
y

(%
)

Android
iOS

Fig. 14: Length time interval lengths vs.
classification performance.

KNN LR LDA QDA SVM RF CNN1PSN140

60

80

100

A
cc

ur
ac

y
(%

)

Android iOS

(a) Steady-state eavderopping

KNN LR LDA QDA SVM RF CNN2PSN260

80

100

A
cc

ur
ac

y
(%

)

Android iOS

(b) Instantaneous eavderopping
Fig. 15: Comparisons with conventional classifiers in terms of eavesdropping EM signal
classification on trained devices.

A B C D E F G H

A

B

C

D

E

F

G

H

0.91 0.05 0.03 0.01 0.01 0.01 0.03 0.02

0.03 0.85 0.02 0.01 0.01 0.01 0.00 0.00

0.01 0.03 0.88 0.01 0.04 0.02 0.00 0.00

0.01 0.04 0.02 0.89 0.01 0.04 0.00 0.00

0.01 0.02 0.04 0.02 0.92 0.01 0.00 0.00

0.01 0.02 0.02 0.05 0.01 0.91 0.00 0.00

0.01 0.00 0.00 0.00 0.00 0.00 0.95 0.01

0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.97

0.0

0.2

0.4

0.6

0.8

1.0

(a) Android Devices

A B C D E F G H

A

B

C

D

E

F

G

H

0.94 0.04 0.02 0.03 0.02 0.01 0.02 0.01

0.01 0.87 0.01 0.01 0.02 0.01 0.00 0.00

0.01 0.01 0.89 0.02 0.03 0.02 0.00 0.00

0.01 0.03 0.01 0.87 0.03 0.06 0.00 0.00

0.01 0.02 0.05 0.02 0.87 0.01 0.00 0.00

0.01 0.03 0.01 0.05 0.02 0.90 0.00 0.00

0.01 0.00 0.00 0.00 0.00 0.00 0.96 0.03

0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.96

0.0

0.2

0.4

0.6

0.8

1.0

(b) iOS Devices

Fig. 16: Confusion matrix while classifying different eavesdropping
behaviors on different devices.

EM signals with labels. All thirty of the devices remained
stationary on a table during the initial collection of
exemplar EM signals generated while accessing cam-
era/microphone data. Following this initial assessment,
the participants were free to use their three devices
in any manner that suited them, which resulted in
randomly using multimedia related apps during which
the corresponding built-in magnetometer readings were
labeled as follows: “none”, “audio”, “front/rear-video”,
“front/rear-video-audio” and “front/front-pic”.

B. Methodologies Evaluation
1) Time Interval Selection: As mentioned previously,

the proposed CNN is tasked with extracting effective
features in EM data over a fixed time interval. Assigning
the time interval a small value would enable fine-grained
differentiation between eavesdropping behaviors; how-
ever, this would greatly reduce the subsequent classifica-
tion performance, due to a lack of time series information
for feature extraction. For the steady-state eavesdrop-
ping classification task, we divided the training dataset
according to different time interval values, and used
the CNN (as Fig. 13(a)) with an additional softmax
layer to extract features and classify them. Fig. 14 shows
that when the time interval was set at over 5 seconds,
the average accuracy of the classification model reached
around 90% with negligible standard deviation. For
the instantaneous eavesdropping classification task, we
chose 3 seconds as the time interval value based on the
maximum value of taking a picture among the while
mobile devices.

2) Eavesdropping Behavior Classification: We compared
the effectiveness of the proposed model in detecting in-
stances of continuous eavesdropping (audio and video)
with seven basic time-series classification algorithms
(kNN [24], LR [15], LDA [25], QDA [26], SVM [17],
RF [16] and CNN [27]). For the first six traditional
algorithms, we used the following features in the time
and frequency domain: min/max, min/max 10th/90th,

mean and standard deviation over each sliding window
on the 2-second EM signals; we used energy, domain
frequency ratio, FFT peaks as frequency domain fea-
tures. For CNNs, we selected the same structure as
the subnetwork (Fig. 13(a) and 13(a)) used in pseudo-
Siamese Network I/II (PSN1/2) with a softmax layer
added to the output feature layer. The results are shown
in Fig. 15(a) and 15(b), the convolution-based methods
outperformed the conventional classifiers. This can be
attributed to the fact that conventional classifiers rely on
the quality of the extracted features, and simple feature
extraction methods in the time-domain and frequency-
domain often fail to extract key features of the EM
signals. The excellent classification accuracy of CNN and
our proposed method can be attributed to the pow-
erful feature extraction capability of CNN. The confu-
sion matrix of classifying seven eavesdropping behaviors
and “no eavesdropping” is shown in Fig. 16, where A
means “no eavesdropping”, B means “audio”, C and D
means “front/rear-video”, E and F means “front/rear-
video-audio”, G and H means “front/rear-pic”. Overall,
our proposed system obtained 94.71% of accuracy, and
95.61% of recall when detecting eavesdropping on An-
droid devices, while 95.47% of accuracy, and 96.23% of
recall on iOS devices.

C. Robustness on Unseen Devices
We also assessed the classification performance of the

proposed scheme when applied to unseen devices. This
was achieved using the testing dataset in Table II, which
was collected using ten mobile devices. The experiment
results are presented in Fig. 17. Overall, the conventional
CNN with softmax layer performed very poorly (average
36.4% on steady-state types and 41.7% on instantaneous
types) in this analysis, due mainly to the fact that the
robustness of those models depends on the availability of
a priori information related to the device. If we included
a labeled EM dataset from the unseen device, it is very
likely that CNN would provide better results; however,
the process of collecting and labeling EM signals for new
devices can be troublesome. The excellent performance
of the proposed Pseudo-Siamese Networks when applied
to unseen devices can be attributed to the structure
of the network. When the classification results of the
two networks were combined, the model achieved an
average classification accuracy of 84.2% on the steady-
state eavesdropping classification and 92.9% on the in-
stantaneous type when applied to unseen devices. We
added the exemplar EM signals of the unseen mobile

12

CNN1+
softmax

CNN2+
softmax

PSN1 PSN220

40

60

80

100

A
cc

ur
ac

y
(%

)

Android iOS

Fig. 17: Comparisons with the conventional CNN in terms of eaves-
dropping EM signal classification accuracy on the unseen devices.

0 10 20 30 40 50 60 70 80 90 100
Sample Rate (Hz)

0

20

40

60

80

100

A
cc

ur
ac

y
(%

)

PSN1 (Huawei P20Pro)
PSN2 (Huawei P20Pro)
PSN1 (iPhone 7Plus)
PSN2 (iPhone 7Plus)

Fig. 18: Influence of the magnetometer sampling rate on eavesdrop-
ping behavior classification accuracy.

device at the input end to enable the entire network to
learn the characteristics of the EM signals generated by
eavesdropping-related functions. We then compared the
features extracted from the instance EM signals to ob-
tain the final classification result. Fortunately, collecting
exemplar EM signals for a new mobile device is a simple
matter, requiring only a few minutes.

D. Influence of Sampling Rate
We sought to determine whether the sampling fre-

quency of the built-in magnetometer would affect the
classification accuracy of the MagDefender system. This
was achieved using down sampling to alter sampling
rates in the dataset of Huawei P20Pro and iPhone 7Plus.
Then we retrained two PSNs models and evaluated
the results. Fig. 18 lists the eavesdropping classification
accuracy using data obtained over a range of sampling
rates. At a sampling rate of ≥ 50Hz, the accuracy of
the system was close to the theoretical upper bound,
indicating that MagDefender should perform well on
most devices.

E. Robustness Against Geomagnetic Noise
We evaluated the effectiveness of the proposed ge-

omagnetic noise cancellation method (detailed in the
first part of Sec. IV-D), and testing our trained model
in five real-world scenarios with different motion sta-
tus. The volunteer was asked to use the mobile device
freely (here we chose the iPhone 7Plus) in five different
environments, while collecting readings from the built-
in magnetometer and labeling them. Fig. 19 shows that
the geomagnetic noise cancellation method improved the
stability and accuracy of detection.

F. Influence of Nearby Electronic Devices
We also evaluated the impact of EM signals generated

by two household electronic devices on the performance

Sitting Lying Walking Metro Taxi20

40

60

80

100

A
cc

ur
ac

y
(%

)

PSN1 w cancellation
PSN1 w/o cancellation

PSN2 w cancellation
PSN2 w/o cancellation

Fig. 19: EM signals related to eavesdropping classification accuracy
with mobile devices in static position and in motion.

0 2 4 8 10 15
Distance (cm)

20
40
60
80

100

A
cc

ur
ac

y
(%

)

PSN1 PSN2

(a) Laptop

0 2 4 8 10 15
Distance (cm)

20
40
60
80

100

A
cc

ur
ac

y
(%

)

PSN1 PSN2

(b) Washer

Fig. 20: Classification of EM signals: accuracy vs. distance to elec-
tronic devices.

of the classifier in a real-world environment. We placed
the mobile device (iPhone 7Plus) close to the electronic
appliances while collecting EM signals for testing. As
shown in Fig. 20(a), placing the mobile device close to
a laptop computer had almost no effect on classification
accuracy. As shown in Fig. 20(b), classification accuracy
remained high as long as the device was kept ≥ 3cm
from the washing machine. Placing the mobile device
1cm from large household appliances (microwave oven,
washing machine) greatly hindered system performance,
due to the fact that those appliances produce EM signals
similar to a sine wave with wide variations in signal
amplitude, which can lead to large deviations in the
dataset during data preprocessing (i.e., normalization).

VII. Discussion
In this section, we discuss four other eavesdropping

scenarios applicable to the MagDefender system. We
also discuss the adversary model of MagDefender and
how attackers could potentially cause the system to fail.

Other eavesdropping scenarios. Eavesdropping at-
tacks are not limited to cameras and microphones. It
is possible to access GPS data to obtain location infor-
mation or utilize the Bluetooth channel to transfer data
surreptitiously. Using third-party libraries, attackers have
even been known to obtain screenshots or record screen
in order to steal private information, such as photos and
input PINs [28]. We conducted experiments involving
the detection of four types of eavesdropping attack. Five
mobile devices (in Table II) were used for training,
and another two devices to evaluate the performance
on unseen devices. We employed the same methods for
the collection of exemplar and instance EM emissions
with which to compile four datasets to train Pseudo-
Siamese CNNs corresponding to the four eavesdropping
strategies. As shown in TableIII, the proposed Pseudo-
Siamese CNNs approach proved highly effective in de-
tecting and differentiating among the additional four
types of eavesdropping attack.

13

TABLE III: Classification results of MagDefender in identifying four
types of eavesdropping attack. Accuracy1 means the classification
accuracy on the trained devices. Accuracy2 means on the unseen
devices.

Type GPS Buletooth
Transmitting

Screen
Recording Screenshots

Accuracy1(%) 91.6 89.2 96.4 93.8
Accuracy2(%) 89.3 87.6 95.7 90.4

Potential countermeasures to inhibit MagDefender.
In the following, we examine three methods by which
the MagDefender could potentially be thwarted:

(1). Generating confounding EM signals: Attackers
could alter CPU usage by running irregular code in the
background in order to generate EM signals to mask
evidence of eavesdropping behavior. This strategy could
perhaps be used to mask actions that occur instanta-
neously (i.e., taking a photo or screenshot); however,
applying it to continuous eavesdropping actions (e.g.,
recording audio or video) would disrupt the normal
operation of the device, leaving it open to detection.

(2). Hacking the magnetometer and/or motion sensor:
Theoretically, MagDefender could be defeated by mod-
ifying the hardware drivers of the magnetometer and
motion sensors (in the Linux Kernel), or transplanting
relevant core libraries (in the HAL layer) to provide erro-
neous data in the upper layers. However, magnetometer
and motion sensors are commonly used for tasks such as
gesture recognition. Modifying the readouts from these
sensors would again disrupt the normal operation of the
device, leaving it open to detection.

(3). Modifying the hardware: The internal electronic
components could be physically shielded using ferro-
magnetic materials to hinder the detection of EM signals
by the magnetometer; however, shielding all the com-
ponents would not be feasible due to the tightness of
device packaging. Another approach would be to limit
the sampling rate of the magnetometer (e.g., 5Hz and
corresponding result is shown in Fig. 18) in order to
compromise classification accuracy; however, this would
also have a negative effect on the performance of legiti-
mate apps.

VIII. Related Work
A. Eavesdropping Detection Techniques

Numerous researchers in the field of data security have
addressed the issue of eavesdropping on mobile devices.
Pan et al. scanned 17260 popular Android apps from
a variety of app markets to identify instances of code
associated with the leakage of data from multimedia
sensors [28]. They examined media permissions, privacy
policies, and outgoing network flows in an attempt to
identify apps that upload audio recordings to the Inter-
net without explicitly informing the user. Note however
that they were unable to examine media exfiltration
from background activity and completely disregarded
iOS apps. They also failed to address the realistic attack
scenario in which an app transforms audio recordings
into less detectable text transcripts before sending out

the information. By contrast, the MagDefender system
is able to detect access to multimedia data directly from
magnetometer readings. MagDefender can also detect
the eavesdropping behaviors from the OS itself and the
malicious apps in means of transplantation attacks.

B. Side-channel Sensing on Mobile Devices
Researchers have developed numerous side-channel

sensing technologies, based on system information or
data from sensors in mobile devices.

System information: Shmatikov [29] illustrated how
the memory footprint left by browsers can be used for
website fingerprinting. Several researchers have shown
that power consumption traces [30], [31], [32] can be
used to infer the opening of apps and websites. In [33],
[34], the authors designed learning systems to automat-
ically fingerprint apps using encrypted network traffic.
Note however that it is very difficult for third-party apps
to acquire the system kernel data (i.e., CPU/memory
usage, power consumption) with high sampling rates
(usually ≤ 20Hz). By contrast, the MagDefender system
utilizes EM side-channel information instead of system
kernel data to detect eavesdropping. Our approach does
not require hardware modification, root/jailbreak opera-
tions, or additional system permissions.

Magnetometer data: The EM side channel, specifi-
cally, has been exploited for attacking electronic devices.
In [39], the EM signals emitted by laptops were detected
for the extraction of keys. In [40], EM side-channel
signals were used to create a novel near-field communi-
cation system between mobile devices. In [41], mobile
devices were characterized based on their near-field
electromagnetic radiation signals. Several researches ex-
ploited the reaction of the built-in magnetometer to EM
activity to infer apps and webpages opened on victim’s
laptop/phones [42], [43]. In this work, we prove that
the built-in magnetometer readings accurately capture
the EM emission signal generated by the app accessing
the multimedia sensor data, and also show the feasibility
of identifying the eavesdropping behaviours with the
elaborate deep learning network.

IX. Conclusion
This study used the magnetometer built into mobile

devices to detect instances of eavesdropping via the
on-board microphones and cameras. Systematic analysis
of the EM signals emitted by mobile devices made
it possible for us to identify the specific EM signals
generated when apps access camera/microphone data.
We also developed two Pseudo-Siamese Networks to
identify two types of eavesdropping: steady-state (via
audio/video) and instantaneous (e.g., taking a photo).
Both networks proved highly effective in detecting in-
stances of eavesdropping, even when encountering pre-
viously unseen mobile devices. Furthermore, the pro-
posed MagDefender system can be implemented on any
mobile device using any version of any OSes.

14

References

[1] S. Maheshwari. (2017) That game on your phone
may be tracking what you’re watching on tv.
[Online]. Available: https://www.nytimes.com/2017/12/28/
business/media/alphonso-app-tracking.html? r=1

[2] I. Bogost. (2019) Facetime is eroding trust in tech - the atlantic.
[Online]. Available: https://www.theatlantic.com/technology/
archive/2019/01/apple-facetime-bug-you-cant-escape/581554/

[3] Statista. (2019) Android operating system share
worldwide by os version from 2013 to 2019*.
[Online]. Available: https://www.statista.com/statistics/271774/
share-of-android-platforms-on-mobile-devices-with-android-os/

[4] AndroidDevelopers. (2019) Behavior changes: all apps. [Online].
Available: https://developer.android.com/about/versions/pie/
android-9.0-changes-all

[5] AppleDeveloper. (2018) Microphone background service.
[Online]. Available: https://forums.developer.apple.com/thread/
106415

[6] Z. Zhang, P. Liu, J. Xiang, J. Jing, and L. Lei, “How your phone
camera can be used to stealthily spy on you: Transplantation
attacks against android camera service,” in Proceedings of the 5th
ACM Conference on Data and Application Security and Privacy, 2015,
pp. 99–110.

[7] M. Huilgol. (2020) ios 14 has new orange and green
indicators to warn you about apps using microphone
and camera. [Online]. Available: http://www.iphonehacks.com/
2020/06/ios-14-orange-light-recording-indicator.html

[8] Roman.T. (2020) Miui 12 review – is it the best android ui
on the planet? [Online]. Available: https://www.thephonetalks.
com/miui-12-review-features/

[9] T. Mehta. (2020) Access dots - ios 14 cam/mic access indicators!
[Online]. Available: https://play.google.com/store/apps/details?
id=you.in.spark.access.dots&hl=en US

[10] AndroidDevelopers. (2020) Cameramanager. [Online].
Available: https://developer.android.com/reference/android/
hardware/camera2/CameraManager

[11] ——. (2020) Audiomanager. [Online]. Avail-
able: https://developer.android.com/reference/android/media/
AudioManager

[12] G. E. P. Box and D. A. Pierce, “Distribution of residual autocor-
relations in autoregressive-integrated moving average time series
models,” Journal of the American Statistical Association, vol. 65, no.
332, pp. 1509–1526, 1970.

[13] . H. L. A. Williams, B. M., “Modeling and forecasting vehicular
traffic flow as a seasonal arima process: Theoretical basis and
empirical results,” Journal of transportation engineering, vol. 6, no.
129, pp. 664–672, 2003.

[14] S. Johansen, “Estimation and hypothesis testing of cointegration
vectors in gaussian vector autoregressive models,” Econometrica:
Journal of the Econometric Society, pp. 1551–1580, 1991.

[15] S. Menard, Applied logistic regression analysis. Sage, 2002, vol. 106.
[16] . W. M. Liaw, A., “Classification and regression by randomforest,”

R news, pp. 18–22, 2002.
[17] Joachims, “Text categorization with support vector machines:

Learning with many relevant features,” In European conference on
machine learning, pp. 137–142, 1998.

[18] E. J. Wang, T.-J. Lee, A. Mariakakis, M. Goel, S. Gupta, and S. N.
Patel, “Magnifisense: Inferring device interaction using wrist-
worn passive magneto-inductive sensors,” in Proceedings of the
2015 ACM International Joint Conference on Pervasive and Ubiquitous
Computing, ser. UbiComp ’15. New York, NY, USA: Association
for Computing Machinery, 2015, p. 15–26.

[19] G. Koch, R. Zemel, and R. Salakhutdinov, “Siamese neural net-
works for one-shot image recognition,” in ICML deep learning
workshop, vol. 2. Lille, 2015.

[20] L. Dan, J. Zhang, Z. Qiang, and X. Wei, “Classification of ecg
signals based on 1d convolution neural network,” in IEEE Inter-
national Conference on E-health Networking, 2017.

[21] I. Melekhov, J. Kannala, and E. Rahtu, “Siamese network features
for image matching,” in 2016 23rd International Conference on
Pattern Recognition (ICPR), 2016.

[22] P. Krhenbühl, C. Doersch, J. Donahue, and T. Darrell, “Data-
dependent initializations of convolutional neural networks,” Com-
puter Science, 2015.

[23] Y. N. Dauphin, H. D. Vries, J. Chung, and Y. Bengio, “Rmsprop
and equilibrated adaptive learning rates for non-convex optimiza-
tion.”

[24] M. Tsypin and H. Röder, “On the reliability of knn classification,”
in Lect Notes Eng Comput Sci. Proceedings of the World Congress on
Engineering and Computer Science 2007 WCECS 2007. Citeseer,
2007, pp. 24–26.

[25] S. Balakrishnama and A. Ganapathiraju, “Linear discriminant
analysis-a brief tutorial,” Institute for Signal and information Pro-
cessing, vol. 18, pp. 1–8, 1998.

[26] P. A. Lachenbruch and M. Goldstein, “Discriminant analysis,”
Biometrics, pp. 69–85, 1979.

[27] S. Bai, J. Z. Kolter, and V. Koltun, “An empirical evaluation
of generic convolutional and recurrent networks for sequence
modeling,” arXiv: Learning, 2018.

[28] E. Pan, J. Ren, M. Lindorfer, C. Wilson, and D. R. Choffnes,
“Panoptispy: Characterizing audio and video exfiltration from
android applications,” 2018.

[29] S. Jana and V. Shmatikov, “Memento: Learning secrets from
process footprints,” pp. 143–157, 2012.

[30] Y. Chen, X. Jin, J. Sun, R. Zhang, and Y. Zhang, “Powerful: Mobile
app fingerprinting via power analysis,” IEEE INFOCOM 2017-
IEEE Conference on Computer Communications, pp. 1–9, 2017.

[31] L. Yan, Y. Guo, X. Chen, and H. Mei, “A study on power side
channels on mobile devices,” Proceedings of the 7th Asia-Pacific
Symposium on Internetware, pp. 30–38, 2015.

[32] P. Lifshits, R. Forte, Y. Hoshen, M. Halpern, M. Philipose, M. Ti-
wari, and M. Silberstein, “Power to peep-all: Inference attacks
by malicious batteries on mobile devices,” Proceedings on Privacy
Enhancing Technologies, vol. 2018, no. 4, pp. 141–158, 2018.

[33] Q. Wang, A. Yahyavi, B. Kemme, and W. He, “I know what you
did on your smartphone: Inferring app usage over encrypted data
traffic,” IEEE Conference on Communications and Network Security
(CNS), pp. 433–441, 2015.

[34] V. F. Taylor, R. Spolaor, M. Conti, and I. Martinovic, “Robust
smartphone app identification via encrypted network traffic
analysis,” IEEE Transactions on Information Forensics and Security,
vol. 13, no. 1, pp. 63–78, 2018.

[35] J. Quisquater and D. Samyde, “Electromagnetic analysis (ema):
Measures and counter-measures for smart cards,” Lecture Notes in
Computer Science, vol. 2140, pp. 200––210, 2001.

[36] K. Gandolfi, C. Mourtel, and F. Olivier, “Electromagnetic analysis:
Concrete results,” cryptographic hardware and embedded systems, vol.
2162, pp. 251–261, 2001.

[37] D. Agrawal, B. Archambeault, J. R. Rao, and P. Rohatgi, “The em
side-channel(s),” CHES, pp. 29––45, 2002.

[38] A. Zajic and M. Prvulovic, “Experimental demonstration of
electromagnetic information leakage from modern processor-
memory systems,” IEEE Transactions on Electromagnetic Compat-
ibility, vol. 3, no. 56, pp. 885––893, 2014.

[39] J. Longo, E. De Mulder, D. Page, and M. Tunstall, “Soc it to
em: electromagnetic side-channel attacks on a complex system-
on-chip.” In International Workshop on Cryptographic Hardware and
Embedded Systems, pp. 620–640, 2015.

[40] H. Pan, Y.-C. Chen, G. Xue, and X. Ji, “Magnecomm:
Magnetometer-based near-field communication,” in Proceedings of
the 23rd Annual International Conference on Mobile Computing and
Networking, ser. MobiCom ’17. ACM, 2017, pp. 167–179.

[41] E. J. Wang, T.-J. Lee, A. Mariakakis, M. Goel, S. Gupta, and S. N.
Patel, “Magnifisense: Inferring device interaction using wrist-
worn passive magneto-inductive sensors,” in Proceedings of the
2015 ACM International Joint Conference on Pervasive and Ubiquitous
Computing, 2015, pp. 15–26.

[42] Y. Cheng, X. Ji, W. Xu, H. Pan, Z. Zhu, C. You, Y. Chen, and L. Qiu,
“Magattack: Guessing application launching and operation via
smartphone,” Proceedings of the 2019 ACM Asia Conference on
Computer and Communications Security, pp. 283–294, 2019.

[43] N. Matyunin, Y. Wang, T. Arul, K. Kullmann, J. Szefer, and
S. Katzenbeisser, “Magneticspy: Exploiting magnetometer in mo-
bile devices for website and application fingerprinting,” in Pro-
ceedings of the 18th ACM Workshop on Privacy in the Electronic
Society, 2019, pp. 135–149.

