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Abstract—The efficiency of human-computer interaction is
greatly hindered by the small size of the touchscreens on mobile
devices, such as smart phones and watches. This has prompted
widespread interest in handwriting recognition systems, which
can be divided into active and passive systems. Active systems
require additional hardware devices to perceive movements of
handwriting or the tracking accuracy is not adequate for hand-
writing recognition. Passive methods use the acoustic signal of pen
rubbing and are susceptible to environmental noise (above 60dB).
This paper presents a novel handwriting recognition system based
on vibration signals detected by the built-in accelerometer of
smart phones. VibWriter is highly resistant to interference since
the normal environmental noise will not cause the vibration of the
accelerometer. Extensive experiments demonstrated the efficacy
of the system in terms of accuracy in letter recognition (76.15%)
and word recognition (88.14%) when dealing with words of
various lengths written by various users in a variety of writing
positions under a variety of environmental conditions.

Index Terms—vibration signal, handwriting recognition

I. INTRODUCTION

The shortcomings of touchscreen input methods have be-

come increasingly obvious with the advent of smart phones,

smart watches, and other intelligent devices [1]. Most of

the researches on alternative input systems have focused on

speech recognition [2] and handwriting recognition [3], [4].

Handwriting input is often the only option in cases where

privacy is a concern.

Most existing handwriting recognition methods can be

categorized as localization-based and scratch-based methods.

Localization-based methods detect the movement of the user’s

hand or pen via inertial sensors [1] or wireless signals, such as

acoustic signal [5], [6], [7], WiFi signal [3], and magnetic sig-

nal [8]. Methods based on WiFi signal [3] or magnetic signal

[8] have limitations for experimental scenarios. The acoustic-

based tracking methods [5], [6], [7] achieve millimetre-level

tracking accuracy. Since the medium size of letters in hand-

writing is 2.5−3.5mm according the researches in graphology

[9], these methods can still impair the recognition accuracy.

Scratch-based methods [4], [10], [11] involve the detection

of acoustic signals generated by dragging a pen or finger

across a surface, but these methods are highly susceptible to

environmental noise (above 60dB) [4], [10].

In this paper, we seek to overcome the shortcomings of

existing handwriting recognition schemes by developing a
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system that uses the built-in accelerometer of the smart phone

to detect the vibration signals generated by a pen writing

on the desk. In experiments, VibWriter proves highly robust

to interference from environment noise and vibrations. The

system also demonstrates outstanding recognition performance

under different conditions, such as different smart phones,

different desks and different writing regions.

The development of VibWriter imposes some challenges:

(1) The sampling rate of the built-in accelerometer tends

to be low and lacking in stability. This imposes daunting

challenges in reconstructing and processing vibration signals

from an input with limited bandwidth.

(2) The fact that the vibration signal indicating the start of

a new letter is usually generated by a tap or swipe makes

it difficult to differentiate between letters. Real-world writing

scenarios also present numerous unexpected situations prompt-

ing the user to write more quickly or more slowly. Finally, a

small time interval between letters can lead to signal overlap,

whereas a large time interval can hinder signal separation.

(3) The removal of noise from the signal can be hindered

by variations in noise characteristics over time.

VibWriter addresses these issues using the corresponding

solutions listed below:

(1) Data missing from the vibration signal is reconstructed

using the spline interpolation algorithm. The Xception module

is used to extract deep features for the residual architecture and

depth-wise separable convolution layers.

(2) A mean window is used to detect signal segments

that are characteristic of handwriting. The problems of signal

overlap and signal separation are dealt with by combining

information in the time and frequency domains and selecting

appropriate time for signal splitting and merging based on

changes in signal strength.

(3) We develop a dynamic denoising algorithm, which uses

the noise signal generated during idle periods as a reference.

To the best of our knowledge, this is the first vibration-

based handwriting recognition system. The main contributions

are summarized as follows:

(1) We demonstrate that the built-in accelerometer of the

smart phone provides the sensitivity and resolution required

for the detection of vibration signals generated by handwriting.

(2) We develop the signal processing techniques required to

deal with these vibration signals, including signal construction,

feature extraction, and feature classification. We also resolve

the problems of signal overlap and signal separation.978-1-6654-4108-7/21/$31.00 ©2021 IEEE



(a) Vibration signal of volunteer 1.
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(b) Frequency spectrum of volunteer 1.
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(c) Frequency spectrum of volunteer 1
with interferes.
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(d) Frequency spectra of volunteer 2.

Fig. 1. Preliminary experiments with Samsung S7 (495Hz): 1(a) and 1(b) Vibration signal and spectrum generated by writing the letters “C”, “X” and “Z”
of volunteer 1; 1(c) Spectrum of volunteer 1 with different interferes; 1(d) Spectrum generated by writing the letters of volunteer 2.

(3) We implement VibWriter on an Android smart phone. In

experiments, the system achieves accuracy of 76.15% in letter

recognition and 88.14% in word recognition.

II. BACKGROUND

VibWriter uses the built-in accelerometer of a Samsung

S7 to detect vibration signals generated by the desk when

in contact with a pen. This section outlines preliminary

experiments aimed at answering the following fundamental

questions: i) Do the vibration signals generated by the desk

produce characteristics of different letters? ii) Do the different

environments and users affect the vibration signal?

In the first experiment, we seek to determine whether the

vibration signals generated by the desk produce characteristics

of different letters [12]. The accelerometer of smart phone

can achieve the sampling rate of approximately 500Hz [13],

and even a small strokes of 0.1s can generate 50 samples.

Therefore, we try to recognize different handwriting letters

with the vibration signal. One volunteer is tasked with writing

the letters “C”, “X”, and “Z”. As shown in Fig.1(a), the

exceedingly weak amplitude of the vibration signals make it

difficult to differentiate between the three letters directly. Be-

sides, different letters comprise different numbers of strokes,

as indicated by the spectrum in which the letter “Z” comprises

three strokes, the letter “X” comprises two , and the letter “C”

comprises only one stroke (see Fig.1(b)).

In the second experiment, we first test the vibration signals

in different environments. When the volunteer is writing, we

add different vibration disturbances such as arm movements

and the fan. As shown in Fig.1(c), the vibration caused by the

fan and the movements of the user’s arm is concentrated in the

lower frequency band (below 200Hz), and the high frequency

part of the vibration signal can still distinguish the strokes

written by the volunteer. However, the uncertainty of vibration

interference distribution puts forward the requirements for

signal denoising.

Then, we invite another volunteer to write the letters as

shown in Fig.1(d). We can also distinguish the strokes of

the user from the spectrum. However, due to differences in

pauses, stroke order and strength in the writing process, the

differences in vibration signals make it difficult to popularize

signal recognition.

Preliminary experiments prove that based on the vibration

signal, the user’s strokes can be recognized to distinguish

handwriting in different environments. Nonetheless, it would

be difficult to differentiate between all of the letters based

solely on the number of strokes. When writing quickly, many

letters would be indistinguishable from others with the same

number of strokes (e.g., “D”and “P” or “C” and “O”). A

feature extraction scheme is required for letter recognition.

III. SYSTEM

As shown in Fig. 2, VibWriter comprises three modules:

letter segmentation, letter recognition, and word suggestion.

Vibration signal detected by the built-in accelerometer is first

sent to the letter segmentation module to be divided into

discrete segments. The letter recognition module identifies the

different segments. Finally, the word suggestion module com-

bines the letters into words. The three modules are described

in detail below.

A. Letter Segmentation

As shown in Fig.1, our first objective is to detect the

handwriting by amplitude variation. Unfortunately, real-world

data acquisition can lead to a number of issues, such as

unstable sampling rate, incomplete data segmentation, and let-

ter concatenation. The proposed segmentation algorithm deals

with these issues in two stages: interpolation and detection.

Interpolation: Obtaining the highest sampling rate from

the built-in accelerometer precludes the stable sampling rate

of raw data [13]. In most situations, more than half of the

vibration signals are missing, such that the actual number of

samples collected per second is roughly 490.

The accuracy of timestamps is 1ms. Therefore, the ideal

approach would involve upsampling the raw data to 1000Hz.

This linear interpolation approach has previously been used

to stabilize the sampling rate [13]. However, when the time

interval exceeds 4ms, the complete cycle of the signal (above

250Hz) is missing and cannot be recovered.

We compare a variety of interpolation algorithms [14],

including spline interpolation, trigonometric interpolation and

linear interpolation, as shown in Fig.4(a). Spline interpolation

proves more effective than linear interpolation in the recovery

of lost data over extended time intervals, and outperforms



Fig. 2. Overview of VibWriter.

trigonometric interpolation in terms of how well the recovered

signal fits the original data. Furthermore, the mean squared

errors of the interpolation algorithms are 0.00468, 0.00585
and 0.00331 respectively.

Spline interpolation uses low-degree polynomials in each

interval, and selects polynomial pieces in a manner that

ensures a smooth fit when combined. For known points

(x1, y1), (x2, y2), the third-order polynomial is:

q(t) = (1−t(x))y1+t(x)y2+t(x)(1−t(x))((1−t(x))a+t(x)b)
(1)

where

t(x) =
x− x1

x2 − x1

a = k1(x2 − x1)− (y2 − y1)

b = −k2(x2 − x1) + (y2 − y1)

k1 = q
′
(x1)

k2 = q
′
(x2)

Detection: Generally, the tap of a pen on the desk surface

produces a distinctive vibration pattern indicating the begin-

ning of writing. However, in some situations where the user

seeks to write quietly, such as a meeting room, the writing

process begins with a swipe. This situation makes it difficult

to identify the start of writing. The signal produced by a tap

presents an abrupt change in amplitude, whereas the amplitude

of the signal produced by a swiping motion grows gradually.

The common approach to segmentation often fails to identify

vibration signals that begin with a swipe [4], [10]. We calculate

the mean value of the vibration signal S(t) with the sliding

window tw = 100ms.

Letter detection is based largely on three time thresholds T1,

T2 and T3, and three amplitude thresholds A1, A2 and A3. T1

and T2 indicate the minimum and maximum lengths of the

letters, whereas T3 indicates the time interval between words.

A1 and A2 indicate the maximum and minimum absolute

values of M(t), whereas A3 indicates the minimum absolute

value of interference. We use the time threshold to constrain

the signal length of letters and words, and the amplitude

threshold to judge the begin and end of the signal.

Peak selection is based on the amplitude threshold, where

the start threshold is Mstart = 0.2 × A1 + 0.8 × A2 and the

end threshold is Mend = 0.1×A1 + 0.9×A2.

(a) Length of letters. (b) Amplitude of signals. (c) Length of intervals.

Fig. 3. Experiments on normal writing patterns in the time and amplitude
domains: 3(a) Time elapsed while writing letters of different users; 3(b)
Amplitudes of target signals and interference; 3(c) Intervals between words
of different users.

In instances where the amplitude of M(t0) exceeds Mstart,

timestamp t0 indicates the start of a writing segment. As long

as the user is writing in a normal manner, it is possible to

identify the end of a writing segment based on Mend, as shown

in Fig.4(b).

As shown in Fig.3(a), preliminary experiments show that

the handwriting time remains stable for most users. Therefore,

under normal circumstances, it can be assumed that the users

write in the block-letter style. However, we observe a number

of special situations in which the signal is difficult to segment.

In cases where the time interval between letters is short,

the vibration signals of different letters can overlap in the

time domain, due to the vibration signal lingering for a

few milliseconds after writing ceases. Signal separation can

also be hindered when the writing process is interrupted and

will cause the incomplete segmentation. Besides, there are

vibration interferes such as finger tapping on the desk, which

can also affect the signal detection.

First, We set tsegment as the length of the segment. If

tsegment > T2, the segment is identified as a combination

of two letter signals. T2 represents the maximum length of

a single letter according to our experiment in Fig.3(a). We

can locate a candidate split location, based on Min{M(t)}
in the time domain. As shown in Fig.1, the high frequency

components of the vibration signal are mainly concentrated at

the beginning of the signal. Combined with changes in signal

strength in the spectrum, we can define the point with the

weakest signal strength as the split point, as shown in Fig.4(c).

If tsegment < T1, then it is designated a stroke of a

letter. T1 represents the minimum length of a single letter in

Fig.3(a). Due to the remaining effect, the simple stitching of

two segments is not good choice. Based on the observation
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Fig. 4. Letter segmentation metrics: 4(a) Results of various interpolation methods: the red dots are the vibration signals (hollow dots are stable samples, solid
dots are unstable samples), the blue lines are the interpolation results; 4(b) Vibration signal (blue) and corresponding weighted mean signal (red) showing
different writing conditions: normal fast writing, an interruption during fast writing (with an interval during one letter) and continuous writing (without interval
between letters). The dotted line indicates the results of segmentation based on amplitude; 4(c) Proposed solution to deal with signal separation and overlap
caused by interruption and continuous writing.

of the spectrum above. We can define the point with the

weakest signal strength as the merge point, so as to remove

the remaining effect of the segment, as shown in Fig.4(c).

Then, we set asegment as the maximum amplitude of the

segment. If asegment > A3, then it is designated the vibration

interfere. A3 represents the distinguishing threshold between

handwriting signal and vibration interference. Since the am-

plitude of segments differ considerably from the interference

according to preliminary experiments, as shown in Fig.3(b).

In addition to large vibration disturbances such as knocking

on the desk, minor disturbances such as common fans and

keyboards on the desk will also affect the system. We further

analyze these interferences in Section.IV-C.

Finally, as shown in Fig.3(c), the length of intervals between

words tends to be uniform under normal writing conditions.

Thus, intervals exceeding T3 are designated as the end of a

word, and T3 represents the distinguishing threshold between

letters and words.

B. Letter Recognition

Preprocessing: We adopt Short-time Fourier Transform

(STFT) to generate features in the frequency domain. The

vibration signals of the three axes are converted into a STFT

matrix representing the magnitude and phase of each frame

and frequency, as follows:

STFT{x[t]}(m,ω) ≡ X(m,ω) =

+∞∑
n=−∞

x[n]ω[n−m]e−jωn

(2)

where ω represents the frequency of window function, and m
represents the scale of window function.

The sampling rate of the built-in accelerometer (1kHz) is

far lower than the acoustic signal of handwriting [11], [10],

[4], [15], and the spectral distribution of signals and noise

is similar. As shown in Fig. 1(d), the amplitude of noise

signals below 100Hz far exceeds that of higher frequency

signals. Furthermore, signals associated with ambient noise

do not remain stable throughout the writing process. Thus,

noise removal should be a dynamic process implemented

only at specific time points. We develop a dynamic denoising

algorithm, which identifies noise based on a reference signal

collected during idle periods. We begin by establishing a noise

sample Ŝnoise = [s1, s2, ..., sl], and then update the sample as:

Ŝnoise =
1

N

N∑
i=1

Snoisei (3)

where l indicates the length of the noise sample according

to different handwriting segments. Snoise preserves the noise

signal between letters and words, and N represents the number

of samples in Snoise. Then, we can denoise the signal with

the spectrum subtraction [16]:

‖Y (k)‖2 = ‖Ssignal(k)‖2 − ‖Ŝnoise(k)‖2 (4)

where k represents the frequency range of the signal,

Ssignal(k) and Ŝnoise(k) represent the handwriting sample

and the noise sample respectively. For each signal, we use

the latest noise signal to update the noise sample.

Classification: Convolutional neural network (CNN) have

proven highly effective in spectrum classification [4], [10]. The

spectral width of vibration signals is far narrower than acoustic

signals. Therefore, the module have to extract handwriting

features at various scales, (e.g., single taps, single strokes, and

entire letters). As shown in Fig.5, the Xception model [17]

takes advantages of ResNet [18] and Inception [19]. As the

model gets deeper, problems such as gradient disappearance

arise. The residual structure in Xception (the arcs in the Basic

Block) effectively solves this problem and enables features

of different depths in the model to be fused. Second, the

deepening of the model inevitably increases the computational

burden on the hardware. the Xception model uses an Separable

Convolution (the yellow layer in the Basic Block), which

splits the normal convolution into two parts: Channel-wise

Convolution and Point-wise Convolution. Channel-wise Con-

volution extracts features separately for individual channels in

the feature, and Point-wise Convolution aggregates the feature

points in different channels by 1 × 1 convolution. Thus, the



Fig. 5. Architecture of the Xception model.

n×n×m parameters (m represents the number of channels)

required for ordinary convolution are reduced to n× n+m.

To further improve the accuracy of the model, we employ

Focal Loss to facilitate learning using difficult samples [20]:

FL(pt) = −α(1− pt)
γ log(pt) (5)

where pt represents the output of the model, α and γ are

correlation coefficients. α(1−pt)
γ reverses with the difficulty

of sample, so as to strengthen the difficult samples.

C. Word Suggestion

We notice the fact that users often write a word rather

than a single letter. Therefore, we develop a word suggestion

algorithm to enhance handwriting recognition performance at

the word level.

N-gram algorithm Language models are widely used in

natural language processing (NLP) [21]. We employ the N-

gram to determine the probability distribution of letters in

words. The chain rule of letters is defined as follows:

P (ω1, ω2, ..., ωn) = P (ω1)P (ω2|ω1) · · ·P (ωn|ω1, ..., ωn−1)
(6)

where ωi, i ∈ [1, n] represents the letter in the word. The

conditional probability of each letter occurrence is calculated

in terms of maximum likelihood, as follows:

P (ωi|ω1, ..., ωi−1) =
C(ω1, ω2..., ωi)∑

ω C(ω1, ω2..., ωi, ω)
(7)

where C(·) represents the number of times a string appears

in the dataset. Obviously, it would be unrealistic to directly

calculate P (ωi|ω1, ..., ωi−1) based directly on maximum like-

lihood estimation. Assuming that the probability of current

letter occurring depends only on the the first n− 1 letters, we

obtain the following result:

P (ωi|ω1, ..., ωi−1) = P (ωi|ωi−n+1, ..., ωi−1) (8)

Based on the above formula, the 3-gram language model is

defined as follows:

P (ωi|ω1, ..., ωn) =

n∏
i=1

P (ωi|ωi−1, ωi−2) (9)

(a) Word distribution. (b) N-gram algorithm. (c) Edit distance algo-
rithm.

Fig. 6. Word suggestion results: 6(a) Distribution of words of various lengths
among the 5000 most common words in COCA; 6(b) and 6(c) Accuracy in
word identification respectively using N-gram and Edit Distance algorithms.

Edit distance It can be noted that accuracy in correcting

misspelled words is closely related to the lengths of the words.

As shown in Fig.6(b), when the length exceeds five letters,

the accuracy of word suggestion schemes decreases signifi-

cantly. Thus, we analysis the length distribution of the 5000
most commonly used words in the Corpus of Contemporary

American English (COCA) in Fig.6(a). The words exceeding

6 letters make up more than half of the total; therefore, we

focus on longer words using the edit distance algorithm.

Edit distance refers to the minimum number of editing

operations required to change from one string to another. Per-

mitted editing operations include replacing one character with

another, inserting one character, and deleting one character.

The shortest edit distance between the first i characters of

string a and the first j characters of string b can be written as

Leva,b(i, j). The recursive formula used to determine the edit

distance between two strings is as follows:

Leva,b(i, j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max(i, j) ifmin(i, j) = 0

min

⎡
⎣
Leva,b(i− 1, j) + 1
Leva,b(i, j − 1) + 1
Leva,b(i− 1, j − 1)

⎤
⎦ ai = bj

min

⎡
⎣

Leva,b(i− 1, j) + 1
Leva,b(i, j − 1) + 1

Leva,b(i− 1, j − 1) + 1

⎤
⎦ ai �= bj

(10)

As shown in Fig.6(c), the edit distance greatly improve

accuracy in correcting spelling errors in long words. Thus,



Fig. 7. Experimental Setup.

we employ the N-gram algorithm for words of less than five

letters and edit distance for longer words.

IV. EVALUATION

A. Experimental Setup

Hardware. VibWriter is implemented on a Samsung S7

and a MacBook Pro (Intel Core i9 CPU@2.3GHz and 16GB

RAM) is implemented as the server. Based on the built-

in accelerometer1, we can achieve a sampling rate of about

490Hz [22], [13]. We conduct our experiments in the normal

laboratory. As shown in Fig.11, we collect the training set and

test set on a wooden desk. The smart phone is placed in the

centre of the desk, perpendicular to the lower edge of the desk.

The writing region is 10cm to the right of the smart phone.

Training set. We first invite six volunteers to write samples

of 26 uppercase letters with a gel pen as a training set. Two

of the volunteers write the 26 letters 60 times each, whereas

the rest of the volunteers write the letters 20 times each. All

the volunteers write directly on the desk at their own speeds,

strength and in any order they wished.

Test set. The volunteers are then tasked with writing the top

20 words of each length in COCA to test the overall accuracy

of the system.

Parameter. For segmentation, we set the minimum and

maximum length of letters T1 = 0.4s , T2 = 1.5s , minimum

time of the word interval T3 = 1s and the minimum absolute

value of interferes A3 = 0.4 according to our experimental

observation in Fig.3. We introduce the parameters in details

in Section.III-A. For letter recognition, we set the segment

and the overlap of STFT at 128 and 120. For Xception, we

set the batch size at 32 for 40 epochs. We also use the Adam

algorithm with a learning rate of 0.0008. Finally, we set the

Focal Loss coefficients α = 0.2 and γ = 3 [20].

B. Micro Benchmarks

In this section, we evaluate the performance of three main

components of VibWriter. For each volunteer, we build a

handwriting recognition model. For the volunteers who write

letters for 60 times, we can build the model with their own

handwriting samples. For the rest volunteers, we use the

handwriting samples of two volunteers to build the basic

model, and then fine-tune the model with their own samples.

1We use a third-party application AccDataRec for diaplay.

(a) Segmentation accu-
racy of different users.

(b) Recognition accuracy
of different users.

(c) Letter accuracy of
different methods.

(d) The effect of #train-
ing sample.

(e) Accuracy with word
suggestion.

(f) Accuracy without
word suggestion.

Fig. 8. Accuracy of the VibWriter system.

Fig. 9. Confusion matrix of letter recognition.

1) Letter Segmentation: First, we evaluate the accuracy

of the system in terms of letter segmentation, as shown in

Fig.8(a). The segmentation algorithm outlined in Section.III-A

prove highly effective in dealing with signal overlap and signal

separation. However, there are some cases that fluctuations in

the vibration signals are too weak to detect. Those situations

are deemed segmentation failures. The average accuracy re-

sults in the segmentation of letters and words were 98.07% and

97.5%, respectively. Overall, this degree of accuracy should

suffice for most practical applications.

2) Letter Recognition: We use the top-1 output of the

network as the recognition result. As shown in Fig.9, the

average accuracy in letter recognition is 75.69%. Analysis of

misclassification reveals that around 20% of the letters ”K” and

”N” are misidentified as ”R” and ”V”, respectively. Clearly, a

word suggestion algorithm is required to achieve reasonable

recognition performance.

Xception is compared with other classification methods,

including LeNet, AlexNet, ResNet and Inception. As shown

in Fig.8(c), the accuracy of Xception is far higher than that of

the other classification algorithms. We reduce the number of

training sets via model fine-tuning, as shown in Fig.8(d).

3) Word Suggestion: The performance of the VibWriter

system using the N-gram algorithm for short words and the

edit distance algorithms for longer words is verified by count-

ing the number of correct words suggestions. As shown in

Fig.8(e), the proposed algorithms achieve overall accuracy of



Fig. 10. Angle of the smart phone.

88.14% for words of various lengths. The inter-user accuracy

of the system is shown in Fig.8(b). As shown in Fig.8(f),

without the word suggestion algorithms, the average overall

accuracy in word recognition is only 13.57%.

C. Macro Benchmarks

In this section, we evaluate the performance of VibWriter
under a variety of conditions. In each experiment, we vary

only one variable, such as the writing distance, writing angle,

writing angle, etc.

1) Writing Location: The distance between the smart phone

and the handwriting region is experimented by moving the

phone in a horizontal direction, in a range of 5cm to 120cm
from the handwriting region. During this process, the angle of

the phone is not changed. Then, the phone is then placed back

in its original position (10cm to the left of the handwriting

region) and the angle of the phone is changed, as shown

in Fig.10. The volunteers are tasked with writing the same

words as test set. Overall, VibWriter achieves high accuracy

in terms of handwriting recognition regardless of the distance

and angles between the writing position and the smart phone,

as shown in Fig.11(a) and Fig.11(b).

2) Vibration Interference: Unlike the interference discussed

in Section.III-A, the disturbances of minor vibrations could po-

tentially interfere with VibWriter, such as the vibration of the

desktop fan, people walking around, tapping on the keyboard,

etc. We evaluate each of these Interference separately. The

desktop fan is placed on the desk at a distance of 5cm from

directly above the smart phone to simulate interference from

electronic devices. Besides, two volunteers are asked to walk

around the desk or tap the keyboard on the desk to simulate

the other two interferences. The keyboard is placed 20cm to

the right of the writing region. Then, the other volunteers are

tasked with writing the same words as test set.

As shown in Fig.11(c), vibration interference have an impact

on the vibration signal. Nonetheless, the dynamic denoising

algorithm (described in Section. III-B) is able to maintain

word recognition accuracy above 75%. Clearly, VibWriter is

robust to most of the vibration-related interference commonly

encountered in the real environments.

3) Different vibration sources: The vibration signal gener-

ated by writing is closely related to the vibration source, such

as different pens (include gel pen, pencil and stylus), different

medium (include a piece of A4 paper and notebook) and desk

material (include wooden, glass and metal). The volunteers

are tasked with writing the same word as the test set under

different conditions. We verified different pens, medium and

(a) Influence of different
distances.

(b) Influence of different
angles.

(c) Influence of different
vibration interferences.

(d) Influence of different
pens.

(e) Influence of different
medium.

(f) Influence of different
materials.

Fig. 11. Evaluation of VibWriter under different conditions.

desk materials separately. We also kept the phone position,

writing distance and other conditions constant.

As shown in Fig.11(d), the accuracy of the stylus is sig-

nificantly lower than that of hard pens, because the vibration

signal generated by the softer tip is weak. Therefore, we do

not recommend writing with stylus.

Fig.11(e) gives the results of different medium, the results

show that notebook has worst accuracy of 14.16%. Since the

medium between the pen tip and the desk will seriously affect

the propagation of the vibration signal, especially when the

contact between the medium and the desk is loose or spaced,

the vibration signal may be completely isolated.

The different desk materials also affect the recognition accu-

racy, as shown in Fig.11(f). Wooden desks are usually rough,

whereas glass and metal desks are smoother and produce

vibration signals of lower amplitude than wooden desks.

D. System Evaluation

1) Responsiveness: Latency (delays in system response) is

a crucial issue in real-time input systems. In assessing the

responsiveness of the overall system, we measure the time that

elapsed between receiving a signal and outputting a result.

The average latency in recognizing 520 letters is 165ms.

The average latency in recognizing 120 words is 239ms.

These results indicate that the responsiveness of VibWriter is

sufficient for real-time operations.

2) User Study: A survey is conducted to collect feedback

from the volunteers in terms of accuracy, input speed, respon-

siveness, and security. Scores are based on satisfaction with 5

points ranging from very unsatisfied (1) to very satisfied (5).

As shown in Tab.I, more than 85% of the volunteers

express satisfaction with the system in terms of accuracy,

input speed, and system security, whereas 75% are satisfied

with the responsiveness of the system. Some of the volunteers

comment that VibWriter is less susceptible to eavesdropping

than conventional touchscreen input methods.



TABLE I
USER SATISFACTION OF VibWriter.

Satisfaction Accuracy Speed Delay Security
Very Satisfied 8 7 5 10

Satisfied 9 11 10 8
Normal 3 2 5 2

Unsatisfied 0 0 0 0
Very Unsatisfied 0 0 0 0

V. RELATED WORK

A. Localization-based Methods

The main idea of localization-based method is to recover

the user’s writing trajectory by tracking hand or pen in the

space during the writing process. The major approaches ever

used are motion-based and wireless signal-based.

Motion-based methods. These methods usually need to

adopt embedded devices with built-in sensors such as gy-

roscope and accelerometer. [23] utilized the gyroscope and

accelerometer built in the smart watch to track the movement

of the user’s hand. GyroPen [24] treated smart phones as pens,

and the built-in sensors are used to track the user’s actions and

recognize the handwriting letters. Pentelligence [1] integrated

the microphone and accelerometer into an electronic pen,

combining the sound of writing with the moving information

of the pen to recognize the user’s handwriting.

Wireless signal-based methods. Wireless signal-based

methods use wireless signals to sense the movements of the

user’s hand or pen, such as light, Wi-Fi and magnetic signal.

WiReader [3] used Wi-Fi signal to sense the movement of

user’s hand based on Channel State Information. MagHacker

[8] used the magnetic sensor built into smart phones to detect

changes in the magnetic field of stylus during the writing

process. Acoustic-based tracking methods [5]–[7], [25], [26]

achieved millimetre-level tracking accuracy, the tracking error

can increase as the writing distance increases. [7] showed that

the error increases from 5mm to 15mm while the distance

increases from 10cm to 40cm. According to the researches

in graphology [9], the medium size of handwriting letter is

2.5 − 3.5mm. Therefore, these methods can still impair the

recognition accuracy [27], [28]. As a comparison, VibWriter
uses the built-in accelerometer of the smart phone. During the

evaluation, the size of handwriting letters is around 5mm and

the recognition accuracy remains similar across distances from

10cm to 60cm.

B. Scratch-based Methods

Scratch-based handwriting methods use the acoustic sig-

nal caused by the friction during handwriting process. Wor-

dRecorder [10] used the spectrum diagram of the acoustic

signals of single letter. WritingRecorder [4] designed the

Inception-LSTM module to extract deep local features and

time-series relations between frames. Ipanel [11] found that

the acoustic signals caused by finger sliding against the desk

depend on different movements. However, the scratch-based

methods are sensitive to ambient noise, and the recognition ac-

curacy decreases significantly when the noise is above 60dB.

Specifically, WordRecorder [10] showed the letter recognition

accuracy is reduced by 37% from 79.8% to 50% with 60dB

noise (while that of VibWritter is 76.2%); WritingRecorder

[4] showed the word recognition accuracy is reduced by

19.8% from 92.8% to 74.4% with 65dB noise (while that of

VibWritter is 88.1%). On the other hand, VibWriter is robust

against both environmental sound noise and vibration noise.

C. Vibration-based application

Vibration signals are closely related to daily behaviors, such

as walking [29], talking [13], [22] and authentication [30]–

[32]. FootprintID [29], [33] used the vibration signal of the

floor when walking to identify different users. Spearphone

[22] and paper [13] used the effect of the phone’s built-in

speaker on the built-in accelerometer to steal the acoustic

signal through the vibration signal. SurfaceVibe [12] proposed

a vibration-based interaction tracking system for multiple

surface types. [30], [31] enabled user authentication by means

of user characteristics sensed by vibration signals.

VI. DISCUSSION AND CONCLUSION

Implement on smart watches. Due to hardware limitations,

the sampling rate of accelerometers in smartwatches is approx-

imately 100Hz. Coarse-grained data cannot be used to identify

the user’s writing. While we believe that as smartwatches

continue to be updated, VibWriter can be applied to smart

watches and other mobile devices.

Sampling rate of smart phones. Taking an Android

phone as an example, setting the highest sample rate

(SENSOR DELAY FASTEST ) [13] will suffer from

the problem of unstable sampling rate. The second highest

sampling rate (SENSOR DELAY GAME) has a delay

of 20ms, and the accelerometer has a sampling rate of 50Hz
and a bandwidth of 25Hz, which cannot be used to recognize

the handwriting letters.

This paper introduces a novel handwriting recognition

system based on vibration signals. The proposed VibWriter

system is able to overcome instabilities in sampling rates

and does not require external hardware devices. Extensive

experiments demonstrated the efficacy of the system in terms

of accuracy in letter detection (76.15%) and word detection

(88.14%) when dealing with words of various lengths written

by various users in a variety of positions under a variety of

environment conditions.

In future work, we will extend the system to include low-

ercase letters and numbers, and develop a recognition system

that runs entirely on the smart phone. Additional methods will

be included to improve the recognition accuracy, including

sentence-based suggestion and the fusion of vibration signals

with other sensors, such as acoustic and gyroscope signals.
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