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Abstract—Speech-based interaction systems are widely used in
mobile devices like smartphones. With advances in deep neural
networks, tasks such as speech emotion recognition (SER) en-
hance these systems’ user-friendliness. However, deploying SER
models on mobile devices is challenging due to their complexity
and computational demands. While pruning can reduce complex-
ity, it often compromises accuracy, and hardware accelerators
like FPGAs are difficult to integrate into mobile devices. This
paper proposes Amser+, a real-time speech emotion recogni-
tion framework using signal compression and task offloading.
Amser+utilizes logarithmic Mel-filter bank coefficients (Fbank)
and singular value decomposition (SVD) for feature extraction
and compression. The compressed signal is only 6.25% of the
original size, achieving 2.24x faster transfer rates and 55.35%
energy savings compared to raw audio transmission. Despite the
compression, the features preserve key audio information for
text and emotion recognition, performed server-side. Experiments
show a WER of 4.68% (Librispeech), 10.69% (CommonVoice),
and 72.85% emotion recognition accuracy (IEMOCAP).

Index Terms—Speech Emotion Recognition, Feature Compres-
sion

I. INTRODUCTION

Speech is a prevalent interaction method in smartphones,
stereos, and other IoT devices. The global speech and voice
recognition market is expected to grow from $12.62 billion in
2023 to $59.62 billion by 2030 [1]. Unlike text, speech carries
richer information such as emotion [2] and gender [3], [4].
Emotion recognition, in particular, enables intelligent systems
to offer more personalized services [5]. For instance, in-car
assistants monitor driver alertness and stress through speech,
while smart customer service systems adjust their responses
based on user emotion. In home healthcare settings, speech-
based monitoring is increasingly used to detect mental health
states or emotional fluctuations in elderly users. These sce-
narios require not only accurate emotion recognition but also
low latency and high energy efficiency, given the constraints
of mobile or embedded edge devices.

However, deploying real-time speech emotion recognition
(SER) systems on such devices remains challenging. Deep
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neural networks [6]–[8], while accurate, are resource-intensive
and typically require significant computational power, storage,
and thermal headroom—resources that are often lacking in
mobile environments. Moreover, applications such as voice as-
sistants and in-car systems are highly sensitive to latency (e.g.,
responses must occur within 200–250 ms [9]–[11]), while
also operating in noisy and bandwidth-constrained environ-
ments. Although researchers have reduced model complexity
on mobile devices using techniques like branch pruning [12],
weight sharing [13], tensor quantization [14], and knowledge
distillation [15]–[17], these often reduce accuracy. Hardware
solutions like GPUs [18], FPGAs [19], and ASICs [20], [21]
improve computational capacity but are difficult to deploy on
mobile devices due to size and power constraints.

We propose Amser+, a distributed speech emotion recogni-
tion framework using signal compression. Rather than com-
pressing raw audio directly, Amser+ shifts the compression
focus to the Mel-spectrogram domain, which serves as the
primary feature in most downstream speech tasks. On mobile
devices, the system computes Mel-filter bank (Fbank) coeffi-
cients and applies singular value decomposition (SVD) [22]
to extract compact, low-rank representations. This strategy
reduces the feature size to only 6.25% of the original audio,
significantly lowering transmission and storage demands while
preserving perceptually relevant emotional cues. Deploying
real-time speech applications on mobile devices faces sev-
eral challenges. First, mobile devices have limited computing
power, making it hard to support complex neural networks.
Second, IoT devices like smart speakers lack storage for long-
term audio data and large models. Lastly, current emotion
recognition models rely solely on dataset knowledge, limiting
their accuracy.

We propose Amser+ to address these challenges by cre-
ating a real-time speech emotion recognition framework for
mobile devices and servers. The system offloads deep neural
network tasks to servers, reducing the computational and
storage burden on mobile devices. It also compresses speech
signals using Fbank features and SVD, minimizing storage
needs. Contemporary methods [23]–[28] commonly use neural
networks for emotion recognition, feature extraction, and data
classification. Building on these approaches, we propose a
novel multimodal model for emotion recognition. We first
apply Automatic Speech Recognition (ASR) [6] to convert
audio signals into text. We incorporate external knowledge
using a pre-trained RoBERTa model to enhance emotion
recognition accuracy further. Additionally, we employ text
embeddings for extracting emotion-related features from the
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Chinese text and use a co-attention mechanism to fuse multi-
modal features effectively. Given the imbalanced distribution
of emotion data in current datasets, such as IEMOCAP [29],
and the fact that a single audio sentence may contain rich
emotional expressions that a single emotion label cannot fully
capture, we address these challenges by employing a MoCo-
based [30] contrastive learning approach to train our model.
This method helps improve the model’s performance by better
capturing the nuanced emotional information in the data.

Extensive experiments demonstrate the feasibility of deploy-
ing a real-time speech emotion recognition system on mobile
devices. The key contributions of this paper are as follows:

• We propose Amser+, a speech emotion recognition
system for edge mobile devices. Unlike traditional
systems that offload all computations to the server,
Amser+reduces transmission latency and optimizes re-
source usage on edge devices.

• We propose a feature extraction and compression module
for audio signals, optimized for mobile devices. Using
Fbank, the audio is converted into an acoustic spectro-
gram, with SVD applied to compress and filter out high-
frequency redundant information.

• We constructed a multimodal neural network for
speech emotion recognition based on the whisper [6],
RoBERTa [7] models and MoCo-based training strategy.

• Extensive experiments show that compared to direct raw
audio transfer, Amser+improves transfer rates by 2.24x,
reduces energy consumption by 55.35%, and achieves a
6.25% file compression ratio. On the IEMOCAP dataset,
it achieves 72.85% accuracy and an F1-score of 0.713.

II. RELATED WORK

A. Real-Time Mobile Computing Applications

Real-time mobile computing has become increasingly es-
sential for latency-sensitive applications such as on-device
speech processing [31]–[33], affective computing [34]–[36],
and human–machine interaction [37]–[42]. Typical examples
include voice-controlled smart home systems [43], where user
commands must be processed with minimal latency; In-vehicle
driver monitoring [44], [45], which requires real-time analysis
of driver behavior to ensure safety; industrial equipment mon-
itoring [46], where fault detection and predictive maintenance
rely on rapid local computation; mobile health systems [47],
[48] that continuously track physiological signals for early
warnings; and augmented reality (AR) [49], [50] applications
that demand instant sensor fusion and feedback. These scenar-
ios [51]–[53] illustrate the growing need for mobile systems
that can operate under strict latency, energy, and connectivity
constraints while ensuring reliable, real-time performance.

B. Deep Neural Network Deployment

Deploying DNN models on edge devices is a common
challenge in AI fields like NLP and computer vision. Solutions
such as Vigil [54], Reducto [55], Filter-Forward [56], and
Glimpse [57] implement selective data offloading to minimize
latency based on feature type, filtering thresholds, and content.

Cracking open the DNN [58] enhances video analytics through
joint camera-cloud inference and continuous online learning.
Elf [9] improves mobile deep vision by distributing inference
tasks to multiple servers. Remix [59] optimizes object detec-
tion on edge devices with image partitioning strategies under
latency constraints. Amser+offers a real-time speech emotion
recognition framework via compression and task offloading.

C. Speech Emotion Recognition

Speech emotion recognition has been studied for multiple
decades within both the machine learning and speech com-
munities. In alignment with the prevailing research approach,
scholars extract feature insights from audio data and subse-
quently employ these insights across a range of classifiers,
including: hidden Markov models [60], convolutional recurrent
network [61], SVM [62], hierarchical binary decision tree
[63], gaussian mixture [64], nerual network [65]. Much of
the aforementioned works relied on context to furnish ad-
ditional information for correcting and inferring emotional
content extracted from the data. The mining and analysis of
emotional information from single-sentence audio data can
pose more significant challenges. Xu et al. [26] introduced
an attention-based network designed for aligning textual and
audio information, along with feature extraction. Yoon [27],
[66] presented a groundbreaking deep dual recurrent encoder
model that seamlessly merges text data and audio signals.
This model employs a pair of recurrent neural networks
(RNNs) to holistically encode the information. Delbrouck [67]
et al. proposed a transformer-based joint-encoding model
called UMNOS for single-sentence emotion recognition and
sentiment analysis.

III. PRELIMINARY STUDY
In speech recognition tasks, methods like MFCC or Fbank

are commonly used to extract two-dimensional features from
audio signals through windowed sampling. For example, Ope-
nAI’s Whisper [6] uses Fbank to extract acoustic spectrograms
from audio, followed by a transformer-based encoder-decoder
model to convert the spectrogram into text labels.

Features extracted through Fbank often contain redundant
information, with high-frequency details offering limited util-
ity in systems like Whisper. Similar to image compression,
where high-frequency details can be removed without losing
key information, we propose using the SVD algorithm to
compress acoustic spectrograms. This preserves low-frequency
features while reducing dimensionality for better identification
and classification.

We verify the efficacy of SVD for compressing audio
features within the Whisper speech recognition framework. In
the Whisper framework, the speech signal s ∈ Rt undergoes
extraction by Fbank to yield the acoustic spectrogram feature
matrix f ∈ Rm×n:

f = FuncFbank(s) (1)

Let k = min(m,n), then we compute the SVD of matrix f :

f = Udiag(S)V H

U ∈ Rm×k, S ∈ Rk, V ∈ Rn×k
(2)
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where diag(S) ∈ Rk×k, V H is the conjugate transpose when
V is complex, and the transpose when V is real-valued, and
the matrices U, V are orthogonal in the real case, and unitary
in the complex case. In this scenario, singular values S are
sorted in descending order and are distinct. Denoting them as
σ1 > σ2 > σ3 · · · > σk. Then f can be expressed as the
following decomposition:

f = Udiag(S)V H =

k∑
i=1

σi

 |
ui

|

(
− vi −

)
(3)

where U = (u1, u2, . . . , uk) and V H =


v1
v2
...
vk

.

Considering that the contribution of these singular values
to the matrix shrinks sequentially, then according to the
Eckhart-Young theorem [68],we can take the compression
approximation of the acoustic spectrogram features:

f ≈ f
′
=

r∑
i=1

σi

 |
ui

|

(
− vi −

)
(4)

where r ∈ N ∩ [1, k], and r
k ∈ [ 1k , 1] denotes the compression

rate for acoustic spectrogram features. In contrast to the
original method where we needed to store U, S, V to recover f ,
now we only need to save U

′ ∈ Rm×r, S
′ ∈ Rr, V

′ ∈ Rr×n

to recover f
′
, resulting in a saved matrix size equal to r

k of
the original.

Subsequently, we compress the Librispeech [69] and Com-
monVoice [70] datasets at various compression rates and
assess the Whisper system’s performance in recognizing the
compressed acoustic spectrogram features. The Librispeech
dataset is a large-scale corpus of read English speech, widely
used for evaluating automatic speech recognition (ASR) sys-
tems. It contains approximately 1,000 hours of transcribed
speech from audiobooks and is designed to evaluate systems in
terms of both word error rate (WER) and transcription quality.
The CommonVoice dataset, created by Mozilla, is an open-
source initiative aimed at collecting a wide variety of speech
samples from diverse speakers. It contains over 7,000 hours of
audio data in multiple languages and serves as a benchmark for
testing ASR systems across various domains and accents. As
a common metric of the performance of a speech recognition
or machine translation system, word error rate (WER) is
employed to evaluate the performance of whisper on both
datasets and can be caculated by the following formulation:

WER =
S +D + I

S +D + C
(5)

where S is the number of substitutions, D is the number of
deletions, I is the number of insertions and C is the number of
correct words. The results depicted in the Fig. 1 demonstrate
that when the compression rate exceeds 10%, the Whisper
system exhibits commendable speech recognition performance
even for compressed speech.

Fig. 1. Impact of Compression Rate for Whisper.

Mobile Device

Speech Signal

Fbank Encoder

Mel Spectrogram

Server

SVD Decomposition ASR (whisper)
Recognized Text

Roberta
Embeddings

DNN

Predicitions

Fig. 2. The system architecture of Amser+.

Although edge devices may lack the computational power
for large-scale models, extracting Fbank features and com-
pressing them for server transmission is feasible. Compared
to direct audio file transmission, sending compressed spectro-
grams reduces bandwidth usage and communication time. Pre-
vious studies show that SVD-based compression at 12.5% for
spectrograms (6.25% for audio files) minimally impacts ASR
performance. Amser+will further verify that this compression
rate maintains accuracy in speech sentiment analysis.

IV. SYSTEM

We present Amser+, a real-time speech emotion recognition
system. It consists of two parts: the mobile device acquires
speech and extracts features using a Fbank encoder to output a
Mel Spectrogram, which is then compressed to reduce storage.
The compressed features retain text and emotion information,
and the server performs text and emotion recognition using
Whisper and multimodal networks. The system architecture is
shown in Fig. 2.

A. Signal Preprocess

1) Feature Extraction: The mobile device extracts Fbank
features (filter bank features) from the user’s speech using a
series of preprocessing steps designed to capture the essential
characteristics of the audio signal. The process begins with
pre-emphasis, which amplifies the higher-frequency compo-
nents of the signal, helping to balance the energy across
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the entire frequency range and reduce the effects of low-
frequency noise. This step is crucial for enhancing the clarity
of high-frequency signals, which are often important for
speech recognition tasks. Next, the signal is split into frames
with overlapping segments, which ensures that no abrupt
changes occur between consecutive frames. The frame overlap
effectively captures the temporal continuity of the speech,
reducing the risk of losing important transitions in the audio
signal. This step is particularly important for maintaining
smooth transitions in speech analysis. Each frame is then
windowed using a Hamming window to minimize edge effects
and reduce spectral leakage. The Hamming window smooths
the signal, ensuring that the transition at the boundaries of each
frame does not introduce artifacts that could negatively impact
feature extraction. The next step is the Short-Time Fourier
Transform (STFT), which converts the time-domain signal
into the frequency domain. The STFT breaks the signal into
smaller segments, allowing the model to analyze frequency
components over time. This transformation enables the model
to capture both the spectral content and temporal evolution of
the speech signal. Finally, the signal is passed through Mel
filtering to convert the frequency-domain representation into
a scale that more closely mimics human auditory perception.
The Mel scale compresses high frequencies while preserving
the perceptually significant features of the signal, ensuring that
the extracted features align with the way humans perceive
sound. This makes the features more suitable for emotion
recognition, as it emphasizes the frequencies most relevant
for distinguishing emotional cues in speech.

2) Signal Compression: In addition to the challenges posed
by limited computational power, storage space is another crit-
ical constraint for mobile devices that cannot be overlooked.
Given the need to handle large volumes of speech data in
real-time, efficient storage management becomes crucial for
the performance of the system. To address this, the system
employs Singular Value Decomposition (SVD), as described
in detail in Sec III, to effectively compress the speech features.
SVD is used to reduce the dimensionality of the extracted
features, discarding less important components while retaining
the most significant information necessary for emotion recog-
nition. This compression process not only minimizes storage
requirements, but also helps with de-noising, removing irrele-
vant or noisy data that may interfere with accurate emotion
classification. By focusing on preserving the key elements
of the speech features—such as textual information derived
from Automatic Speech Recognition (ASR) and the emotional
cues embedded in the speech signal—the system ensures that
only the most relevant data is retained. This balance between
compression and feature preservation ensures that the mobile
device can operate efficiently while still maintaining high
accuracy in recognizing emotions. Ultimately, this approach
enables the system to handle large amounts of data in real-
time, while effectively managing the trade-off between storage
limitations and the need for rich, high-quality features for
emotion recognition.
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Fig. 3. The multi-modal model for emotion recognition.

B. Emotion Recognition

Here, we describe our emotion recognition model. This
model employs three distinct modalities of data as input
sources: Mel, word embeddings, and RoBERTa-encoded em-
beddings. Initially, each modality is processed separately.
Subsequently, all the features from the various input modalities
are combined using a co-attention layer. Finally, Linear layers
are employed to produce the predictions. The overall model
structure is shown in Fig. 3.

1) Modality input: First, the compressed features, derived
from the Mel spectrogram (via Short-Time Fourier Transform,
or STFT), effectively capture the temporal dynamics of signal
energy changes, aligning with human auditory perception.
These features provide a compact yet informative represen-
tation of the speech signal, preserving critical frequency com-
ponents that are essential for emotion recognition.

After SVD decomposition on the mobile edge device, the
Mel features are reconstructed on the server, retaining the key
characteristics of the audio signal along with the semantic
information required for emotion classification. This approach
ensures that only the most relevant features are transferred,
reducing the amount of data while maintaining the integrity
of the emotional cues essential for accurate recognition.

To further enrich the representation, we leverage the Whis-
per [6] model for Automatic Speech Recognition (ASR) to
convert the speech signal into its textual form. The tran-
scriptions generated by ASR serve as an additional source
of information, complementing the audio features. Next, we
utilize text embeddings to directly learn the semantic features
from the text input. Specifically, we employ a 300-dimensional
pre-trained GloVe embedding [71] obtained through spaCy.
This embedding encodes the transcription into fixed-length
vectors, providing a dense representation of the semantic
meaning of the spoken content.

In parallel, we integrate a pre-trained RoBERTa model to
extract higher-level transcription features, allowing the model
to incorporate external knowledge from large corpora. This
enables the model to understand contextual nuances and se-
mantic relationships within the text, which can significantly
enhance emotion recognition, especially for more complex or
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ambiguous emotional expressions.
By combining these multimodal feature extraction tech-

niques—Mel features, text embedding, and external knowl-
edge integration—we create a rich, multi-faceted representa-
tion of the speech signal, improving the model’s ability to
accurately recognize emotions.

2) Modality pre-process: After retrieving the mel-
spectrogram of the audio signals, we apply a classic
Conv-BatchNorm-ReLU structure to extract features in both
the time and frequency dimensions. Then, an LSTM layer
is applied to extract deeper features in the time dimension.
Additionally, the word embeddings have a better time
structure and are more straightforward in each time slot.
Hence, an LSTM is applied to the word embeddings before
using a 1D-convolution layer to incorporate the information
from the entire timeline. The feature extracted from BERT
is a 768-dimensional vector. As it is already well-structured
and contains abundant information, we applied a Linear layer
to modify its size for subsequent multi-modal fusion and
information compression.

3) Multi-modal fusion: Given the presence of three modali-
ties, we need two rounds of fusion to combine all the informa-
tion extracted from these different modalities comprehensively,
and determining the order of fusion is a significant consid-
eration. In our model, we first fuse the audio features and
word embedding features. Their akin temporal structures make
them suitable for initial fusion, as this process enhances the
temporal dimension by leveraging their shared characteristics
to amplify common information and compensate for missing
data unique to one modality. Subsequently, the time-structured
feature mentioned earlier is fused with the BERT-encoded
feature, incorporating external knowledge from the outside
world to in-dataset knowledge. In each fusion, there are two
stages: extracting additional features from one modality with
knowledge from another modality and then merging these
additionally extracted features into a single representation.

In the first stage, we employed the co-attention layer to
convey the presence of another modality to each modality. The
structure of co-attention layer is as shown in Fig. 4. Inspired
by [72], we employed the Encoder-Decoder structure to stack
multiple layers of attention modules. In the co-attention layer,
the first modality employs self-attention alone to extract deeper
information from itself. Following that, the second modality
goes through a self-attention operation, during which a guided-
attention step is conducted to extract more information while
considering both modalities. In contrast to simply using the
output of the self-attention from another modality at the same
depth as the input for guided-attention, leveraging the final
output of the Self-attention layers can offer more enriched
information and a more accurate guide. Both self-attention
and guided-attention are based on the attention mechanism
[73]. The attention module aids in constructing a holistic
perspective of the entire time span during the speech. The
attention consists of a query q, a key k and a value v:

Attention(q, k, v) = softmax(
qkT√
k
)v (6)

In the self-attention, all of q, k and v are from the same

Self-Attention

Features of 
Modality 1 

Features of 
Modality 2 

Co-Attention Layer

Guided-Attention

Self-Attention

Guided-Attention

Self-Attention

Guided-Attention

Self-Attention

Self-Attention

Self-Attention

Fig. 4. The architecture of the co-attention layer.

modality. However, in guided-attention, the v and k are from
the same modality while q is from another different modality.

The first stage of the two fusion is the same, yet they
diverge in the second stage. Considering the similarity of time
structures, for the fusion between features from audio data
and word embeddings, we employ a straightforward element-
wise addition. This approach enhances their temporal structure
and reduces the feature size compared to concatenation. In the
second fusion, the features are dissimilar and lack a shared
temporal structure, which leads to lossy and disorganized
information when using element-wise addition. Consequently,
concatenation is employed to retain more information, which
is crucial for effectively leveraging both in-dataset knowledge
and external-world knowledge. Following the ultimate fusion,
we applied additional self-attention to comprehensively pro-
cess the collective information from all modalities and proceed
to make predictions using a two-layer MLP.

4) Contrastive learning: Through our examination of mis-
classified cases in current state-of-the-art models, we identified
that the ambiguity in the emotions expressed by actors is
another factor hindering the model from learning accurate fea-
tures. It is common to observe that a person’s emotions can be
complex, even involving contradictory feelings simultaneously.
However, datasets with labels assigned to a single emotion as
the ground truth may be misleading in capturing the presence
of other coexisting emotions. Furthermore, employing tradi-
tional cross-entropy loss during model training mechanically
steers the model to predict a probability of 1 only for the
labeled emotion, penalizing predictions with non-zero prob-
abilities for other emotions. This situation can significantly
perplex the model, especially in cases where multiple emotions
coexist. Moreover, stemming from naturalistic conversations
in daily life, our dataset exhibits an imbalanced distribution
of labels. Specifically, there is a pronounced prevalence of
sentences labeled as neutral, contrasting with a scarcity of
instances labeled as surprise.

Consequently, we advocate for the implementation of a
contrastive learning loss as a regulatory measure to alleviate
the impact of multiple emotions and mitigate data imbalances.
Contrastive learning is a training technique that originated
from unsupervised learning. Supervised learning studies [74]
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Fig. 5. The pipeline of the contrastive learning.

have also demonstrated its effectiveness, utilizing samples
from the same class as positive samples and others as negative
samples. The loss used in [74] is following:

LSupCon = −
∑
i∈I

1

|P (i)|
∑

p∈P (i)

log
exp(zi · zp/τ)∑

α∈A(i)

exp(zi · zα/τ)

(7)
Here, I is the set of classes, A(i) is the batch of samples
contrasting with feature zi, P (i) is the set of positive samples
of feature zi in A(i), i.e. samples with the same label.

The loss function is characterized by a vague description,
suggesting that the feature extracted from a given sample
should exhibit proximity to features extracted from positive
samples while maintaining distance from features of other neg-
ative samples. Unlike traditional supervised learning, which
prescribes a specific point in a lower dimension for a sam-
ple, contrastive learning defines positions in high-dimensional
space that a sample should either approach or diverge from.
This can mitigate the impact of labels, thereby diminishing
the influence of multiple emotions.

As depicted in Fig. 5 and Fig. 3, the contrastive learning
loss is computed from the feature projector’s output, whereas
the conventional cross-entropy loss relies on the output of the
predictor. The feature projector and the predictor are both a
one-layer MLP. Therefore, the final loss can be represented as

L =
LCE + α · LSupCon

1 + α
(8)

where α is a hyperparameter to control the importance of
contrastive learning loss in the final loss.

5) Data Augmentation.: We formulate data augmentation
strategies to mitigate the impact of noise, thereby improving
the overall generalization of the model. In detail, we augment
the audio signals in three ways: adding noise based on SNR,
applying pitch shifts, and employing time stretching. When
adding noise to the audio feature, we use an SNR of 30dB,
and randomly initialize the noise in Gaussian distribution. The
pitch shift and time stretch are implemented by the librosa.

In IEMOCAP, to increase the contrastive samples, we take
advantage of the Dropout layers in our model. We run the
prediction twice in one epoch to generate different features
from the same sample. Also, as described in the previous
section, we adopted MoCo [30] with size 16384.

V. EVALUATION
A. Dataset

We use the IEMOCAP (Interactive Emotional Dyadic Mo-
tion Capture) dataset [29] and VCEMO [75], collected by
the University of Southern California (USC) and Shanghai
Voicecomm Information Technology Co., respectively, to eval-
uate our Amser+ system and train and test our model.

IEMOCAP: The dataset consists of 5 sessions featuring 10
actors (5 male, 5 female), with approximately 12 hours of total
recording time. These interactions are scripted to evoke a range
of emotions, and the recordings include both spontaneous
and acted emotional expressions. The emotion categories in
IEMOCAP are anger, happiness, sadness, fear, disgust, neutral,
and a few mixed emotions. The audio recordings are annotated
with emotion labels at the sentence level, making them ideal
for studying speech-based emotion recognition. The dataset
contains both acted and natural emotional speech, providing a
rich resource for training and evaluating emotion recognition
models. Additionally, it includes transcriptions of the spoken
content, which makes it well-suited for multimodal approaches
that integrate both speech and text analysis. IEMOCAP has
been widely used for training, validating, and testing emotion
recognition models, establishing it as a reliable resource for
exploring techniques in speech emotion recognition (SER) and
multimodal emotion recognition.

VCEMO: VCEMO is a recently proposed multi-modal
emotion recognition dataset tailored for Chinese voiceprint-
based applications. It comprises 7,477 single-sentence utter-
ances collected from over 100 native speakers across diverse
dialects and spontaneous conversational settings, thereby of-
fering a rich variety of emotional expressions and acoustic
features. Unlike prior datasets that rely on professional actors,
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VCEMO reflects real-world dialogue scenarios, with each
utterance annotated by experts into six emotion categories:
angry, fear, happy, neutral, sad, and surprise. VCEMO is
particularly valuable for developing and benchmarking robust,
context-aware emotion recognition systems in Mandarin Chi-
nese.

B. Experimental Setup

1) Device: Sever. We utilize a server equipped with 188
GB of RAM and a 48.0GB VRAM’s NVIDIA A40 as our
evaluation system for model training and testing.

Client. Redmi Note 12 Pro equipped with 8 GB of RAM
and Mediatek dimensity 1080 is used as a system client for
audio file processing and compression.

2) Model training: The model was trained for 100 steps
with a batch size of 256 to ensure efficient data processing and
stable gradient updates. The Adam optimizer [76] was used for
its adaptive learning rate mechanism, which helps improve
convergence efficiency. The learning rate was set to 1e-5, a
typical choice for fine-tuning speech recognition models, en-
abling effective parameter updates without overshooting. The
weight decay was set to 0, as no additional regularization was
needed beyond other training strategies to avoid overfitting.

These hyperparameters were chosen based on standard prac-
tices in speech-related tasks, balancing stability and conver-
gence speed. The smaller learning rate, paired with a relatively
large batch size, facilitates gradual convergence, especially in
the context of emotion recognition in speech data.

For the contrastive learning component, the temperature
parameter t of the contrastive loss function was set to 1. This
value was chosen to strike an optimal balance between the sep-
aration of positive and negative pairs in the embedding space,
allowing the model to effectively learn both the structure of
the data and the subtle emotional cues in the speech signals.

The training process was conducted using PyTorch [77]
on an NVIDIA A40 GPU. This hardware choice facilitated
efficient parallel computation, enabling faster training while
maintaining high performance during multiple training steps.
During the training process, key metrics such as accuracy,
loss, and emotion recognition performance were continuously
monitored to ensure consistent model improvement.

C. Baseline Method

To evaluate the performance of our proposed system, we
compare it against four baseline methods, each representing
different approaches for speech signal compression and trans-
mission. These baselines are designed to showcase the effects
of various compression techniques on emotion recognition
performance.

• Raw Audio (WAV) Transmission: The first baseline rep-
resents a system that directly transmits the raw audio file,
typically in WAV format, without any compression. While
this method ensures high-quality audio transmission, it
comes with the drawback of large file sizes, which in-
creases both storage and bandwidth requirements. Despite
the lack of compression, which preserves the original
signal quality, it may not be the most efficient for

real-time applications, especially on resource-constrained
mobile devices.

• MP3/AAC Compression: The second baseline utilizes
lossy audio compression techniques, such as MP3 or
AAC, to reduce the size of the audio file. These for-
mats achieve significant compression by removing less
perceptible audio components, balancing between com-
pression ratio and audio quality. While MP3 and AAC
compression help reduce file size and bandwidth usage,
they can also lead to some loss of information, potentially
affecting the quality of the extracted features for emotion
recognition, especially for subtle emotional cues.

• Mel Spectrogram Compression using Interpolation: The
third baseline involves compressing Mel spectrogram
features using interpolation techniques. In this method,
the Mel spectrogram is downsampled using interpolation
algorithms to reduce its size. Interpolation maintains
a close representation of the original Mel spectrogram
while reducing its dimensionality. However, this approach
may not preserve the finer details of the spectrogram,
which could impact the ability of emotion recognition
systems to identify subtle emotional variations in the
speech.

1) Evaluation Metrics: To assess the performance and
effectiveness of our model for speech emotion recognition, we
use several evaluation metrics. These metrics help us to capture
not only the accuracy of the model but also its operational
efficiency, including its ability to work efficiently on mobile
devices.

Compression Rate. Throughout our experiments, we define
the compression rate as the ratio of compressed data size to
its original counterpart, with units based on file size. In our
model performance comparisons (Sec. V-D1), the compression
rate refers to the reduction applied to Mel spectrograms—for
instance, a 12.5% rate means that the compressed feature has
12.5% the size of the original Mel spectrogram. In contrast, for
the system overhead evaluation (Sec. V-D2), the compression
rate is calculated relative to the raw audio waveform file
size. Under this interpretation, a 12.5% Mel spectrogram com-
pression corresponds approximately to 6.25% of the original
waveform size, as the Mel spectrogram typically accounts for
around half the storage size of the full audio signal in our
pipeline.

Accuracy. Accuracy is the fundamental metric for evaluat-
ing classification tasks, including speech emotion recognition.
It measures the proportion of correct predictions (both true
positives and true negatives) out of all predictions made.
Specifically, accuracy is defined as:

Accuracy =
Number of Correct Predictions

Total Number of Predictions
(9)

In the context of speech emotion recognition, accuracy quan-
tifies how well the model identifies the correct emotional label
for the input speech samples. A high accuracy score indicates
that the model can effectively classify emotional states from
speech data.

F1 Score. While accuracy is important, it may not be
sufficient in scenarios with imbalanced data or when certain
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emotional classes dominate. To address this, we utilize the
F1-score as a more balanced metric, which considers both
precision and recall. The F1-score is the harmonic mean of
precision and recall and is defined as:

F1 =
2 · (precision · recall)
precision+ recall

(10)

The precision represents the fraction of relevant instances
among the retrieved instances, while recall measures the
fraction of relevant instances that were retrieved. The F1-
score provides a better understanding of the model’s ability
to handle class imbalances by rewarding models that balance
both precision and recall. This ensures that the model doesn’t
simply predict the majority class with high accuracy, but
also correctly identifies minority classes, which is crucial for
emotion recognition tasks.

Energy Consumption In addition to classification perfor-
mance, we evaluate energy consumption during audio stream
transmission, which is crucial for mobile devices. The energy
consumption is measured during the transfer of compressed
audio features from the mobile device to the server. This
metric accounts for both the computational load and network
overhead involved in transmitting the audio stream. Lower
energy consumption ensures that the model can run efficiently
on mobile devices without draining the battery, which is
especially important for real-time emotion recognition tasks.

Latency We also measure the latency associated with audio
stream transmission, which refers to the time taken to process
the input audio signal and transmit it for emotion recognition.
Latency is critical in real-time applications like speech emotion
recognition, where quick feedback is required. Our system
aims to minimize latency by efficiently transmitting com-
pressed audio features and processing them on the server. Low
latency ensures that predictions are made promptly, providing
a smooth user experience.

D. Micro Benchmark

1) Model Comparison: The experiments in this section
validate the emotion recognition accuracy by comparing differ-
ent deep neural networks, including UMONS [67], Xu [26],
and Yoon [27], [66]. Additionally, to investigate the impact
of signal compression on speech emotion recognition, we
evaluate the recognition accuracy under different compression
rates.

First, comparing the proposed system with other networks,
we observe that incorporating external world knowledge into
our deep neural network significantly improves emotion recog-
nition performance. The accuracy achieved by our system is
73.92% on IEMOCAP and 67.40% on VCEMO for the 4-
way classification, which is notably higher than the accuracy
of the baseline networks, demonstrating the effectiveness of
integrating additional contextual knowledge. This result con-
firms that the proposed model can better capture the complex
nuances of emotional expression in speech, leading to superior
performance.

Moreover, we analyze the effect of compression rate on
the system’s recognition accuracy. As the compression rate
increases, the accuracy only shows a slight decrease from

73.92% to 72.85% on IEMOCAP and 67.40% to 65.23 %
on VCEMO, which is still significantly higher than the ac-
curacy of the other networks across all compression rates
(see Tab. I and Tab. III). This indicates that our system is
robust to compression, maintaining high performance even
when speech features are heavily compressed. Such resilience
to compression is crucial for mobile and edge devices, where
bandwidth and storage are limited.

The system’s performance is further validated by the F1-
score, which is a combination of accuracy and recall, providing
a more comprehensive evaluation of the model’s effectiveness.
As shown in Tab. II and Tab. IV, the F1-scores of our model
consistently outperform the existing emotion recognition meth-
ods, further solidifying the advantage of our approach in
terms of both precision and recall. This demonstrates that
the proposed system not only achieves high accuracy but
also performs well in terms of balancing false positives and
false negatives, which is essential for real-world emotion
recognition tasks.

In summary, the experimental results show that our system
Amser+, while leveraging signal compression and external
knowledge, achieves superior emotion recognition accuracy
and remains robust under varying compression rates. This
makes our approach highly suitable for resource-constrained
environments, such as mobile devices and edge computing
systems, without compromising recognition performance.

TABLE I
ACCURACY COMPARISON OF DIFFERENT MODELS ON IEMOCAP

Compress Rate Ours UMONS Xu Yoon
12.50% 72.85% 67.84% 63.34% 55.52%
18.75% 73.25% 67.64% 63.64% 55.91%
25.00% 73.52% 67.64% 63.74% 56.21%
50.00% 73.81% 67.74% 63.83% 56.89%
100.00% 73.92% 67.64% 64.32% 58.26%

TABLE II
F1 SCORE COMPARISON OF DIFFERENT MODELS ON IEMOCAP

Compress Rate Ours UMONS Xu Yoon
12.50% 0.713 0.677 0.630 0.548
18.75% 0.716 0.675 0.633 0.553
25.00% 0.721 0.676 0.633 0.556
50.00% 0.725 0.677 0.635 0.564
100.00% 0.728 0.675 0.640 0.577

TABLE III
ACCURACY COMPARISON OF DIFFERENT MODELS ON VCEMO

Compress Rate Ours UMONS Xu Yoon
12.50% 65.23% 61.26% 58.12% 59.82%
18.75% 65.87% 61.54% 58.43% 59.79%
25.00% 66.92% 62.57% 58.67% 60.42%
50.00% 66.85% 63.06% 59.03% 60.85%
100.00% 67.40% 63.27% 59.42% 60.96%

2) System Overhead: In this section, we investigate the
effect of signal compression on power consumption and
latency during the transmission of compressed speech data
over WiFi. The experiment utilizes a compression rate of
6.25%, with a total of 22,366 audio files being transferred for
evaluation. The latency and energy consumption of different
compression methods are measured and compared, including

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2025.3576016

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on June 16,2025 at 16:11:06 UTC from IEEE Xplore.  Restrictions apply. 



IEEE INTERNET OF THINGS JOURNAL 9

TABLE IV
F1 SCORE COMPARISON OF DIFFERENT MODELS ON VCEMO

Compress Rate Ours UMONS Xu Yoon
12.50% 0.654 0.621 0.542 0.572
18.75% 0.664 0.624 0.563 0.575
25.00% 0.668 0.628 0.572 0.584
50.00% 0.670 0.631 0.571 0.583
100.00% 0.672 0.634 0.577 0.591

TABLE V
TRANSMISSION TIME AND ENERGY CONSUMPTION

System RAW MP3 AAC Intp Amser+
Latency(s) 406.58 357.82 344.15 276.38 180.75

Energy(kWh) 0.0056 0.0051 0.0044 0.0041 0.0025

RAW, MP3, AAC, and Interpolation (Intp), along with our
proposed system, Amser+.

As shown in Tab. V, the transmission latency and en-
ergy consumption of each system are summarized. When
transferring raw audio files (RAW), the latency is 406.58
seconds, and the energy consumption is 0.0056 kWh. In
contrast, the systems using lossy compression methods such
as MP3 and AAC achieve faster transmission times, with
latencies of 357.82 seconds and 344.15 seconds, respectively,
and slightly reduced energy consumption compared to RAW.
The Interpolation-based compression (Intp) method further
reduces latency to 276.38 seconds, with energy consumption
decreasing to 0.0041 kWh.

However, our proposed system, Amser+, demonstrates the
most significant improvements. It reduces latency to 180.75
seconds, which is 2.24 times faster than RAW transmission
and 1.53 times faster than the interpolation-based method.
Furthermore, our system achieves a 55.35% reduction in
energy consumption, dropping to just 0.0025 kWh compared
to the raw transmission, marking a substantial improvement in
both latency and energy efficiency.

These results highlight the effectiveness of our proposed
system in optimizing both the speed and energy efficiency of
speech data transmission. The combination of signal compres-
sion and advanced feature extraction techniques enables our
system to achieve faster processing times while significantly
lowering the power consumption, making it highly suitable for
resource-constrained environments, such as mobile and edge
devices, where both energy efficiency and latency are critical
factors.

E. Ablation study

To further understand the effect of each modality, we per-
formed an ablation study based on the 6.25% compression rate.
The results are presented in Tab. VI and Tab. VII, where we
test the network model’s performance in emotion recognition
using different modalities.

When using only Mel Features, the system achieves 55.18%
accuracy and an F1-score of 0.541 on IEMOCAP, and 51.85%
/ 0.503 on VCEMO. This shows that Mel features, which
capture acoustic properties like pitch and tone, provide some
useful emotional cues, but they are not sufficient on their own
for optimal emotion recognition.

TABLE VI
ABLATION STUDY OF USING DIFFERENT MODALITIES ON IEMOCAP:

EMBEDDINGS MEANS THE SIMPLE TRANSCRIPTION EMBEDDINGS WHILE
THE ROBERTA MEANS THE ROBERTA EMBEDDINGS.

Used modality Accuracy F1-score
Embeddings 59.40% 0.571
RoBERTa 55.29% 0.532

Mel Features 55.18% 0.541
Embeddings + RoBERTa 59.26% 0.581

Embeddings + Mel Features 68.21% 0.674
RoBERTa + Mel Features 64.23% 0.639

Embeddings + RoBERTa + Mel Features 72.85% 0.713

TABLE VII
ABLATION STUDY OF USING DIFFERENT MODALITIES ON VCEMO:

EMBEDDINGS MEANS THE SIMPLE TRANSCRIPTION EMBEDDINGS WHILE
THE ROBERTA MEANS THE ROBERTA EMBEDDINGS.

Used modality Accuracy F1-score
Embeddings 55.82% 0.541
RoBERTa 51.96% 0.498

Mel Features 51.85% 0.503
Embeddings + RoBERTa 56.01% 0.539

Embeddings + Mel Features 64.13% 0.632
RoBERTa + Mel Features 59.89% 0.596

Embeddings + RoBERTa + Mel Features 65.23% 0.654

a) Impact of Word Embedding.: Adding Word Embed-
dings leads to significant improvements. The combination
of Mel Features and Word Embeddings achieves 68.21%
accuracy (F1: 0.674) on IEMOCAP and 64.13% (F1: 0.632)
on VCEMO. This suggests that lexical features extracted from
transcriptions effectively complement acoustic signals across
both English and Mandarin speech.

b) Impact of RoBERTa.: When Mel Features and
RoBERTa are combined, the accuracy increases to 64.23%
on IEMOCAP and 59.89% on VCEMO. This result indicates
that while RoBERTa’s contextual knowledge enhances the
feature extraction from speech, it works better when fused
with Mel Features than when used alone. However, it still
underperforms compared to the combination of Mel Features
+ Word Embeddings, suggesting that the latter provides more
direct and relevant features for emotion recognition.

Finally, the best performance on both datasets is achieved
by integrating all three modalities. On IEMOCAP, the full
fusion yields 72.85% accuracy and an F1-score of 0.713; on
VCEMO, the system reaches 65.23% and 0.654, respectively.
These results underscore the importance of multimodal fusion
in capturing diverse emotional signals across languages and
speaking styles.

VI. USER STUDY

In this section, we examine the usability of Amser+. We
invited 10 participants (7 male, 3 female, ages 20–35) to
use the Amser+ that performed real-time speech emotion
recognition and provided feedback in the form of emotion
labels. After completing a short task (e.g., reading predefined
utterances and observing system responses), participants were
asked to rate the system using the 12-item System Usability
Scale (SUS [78]) questionnaire on a 5-point Likert scale
ranging from ”strongly agree” to ”strongly disagree”. The
questionnaire is as follows:
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About you
In this section, you will be presented with a number of

questions about yourself.
1 Your gender:

□ Female
□ Male

2 How old are you?
□ Below 18
□ 18-24
□ 25-34
□ Above 35

3 Your education level
□ High school or lower
□ Undergraduate degree
□ Master’s degree
□ Doctoral degree
□ Other:

4 Languages you speak fluently:
□ English
□ Chinese
□ Hindi
□ Spanish
□ French
□ Other:

About the user experience
In this section, you will be presented with a number of

questions about your opinions and attitudes towards Amser+.
After completing the short task using the proposed

Amser+ system, please rate your opinions on the following
aspects.

1 I think I would like to use the Amser+ emotion
recognition system frequently in real-world appli-
cations.
Strongly Disagree (-2) □—□—□—□—□ Strongly
Agree (2)

2 I found the emotion recognition process more com-
plicated than necessary.
Strongly Disagree (-2) □—□—□—□—□ Strongly
Agree (2)

3 I thought the system was easy to interact with using
my voice.
Strongly Disagree (-2) □—□—□—□—□ Strongly
Agree (2)

4 I think I would need help from a technical person
to use this system.
Strongly Disagree (-2) □—□—□—□—□ Strongly
Agree (2)

5 I felt that processing and feedback were well inte-
grated in this system.
Strongly Disagree (-2) □—□—□—□—□ Strongly
Agree (2)

6 I noticed inconsistencies in the way the system
responded to different emotional tones.
Strongly Disagree (-2) □—□—□—□—□ Strongly
Agree (2)

7 I believe most users would learn how to use the
system quickly.
Strongly Disagree (-2) □—□—□—□—□ Strongly
Agree (2)

8 I found the overall interaction with the system to
be cumbersome.
Strongly Disagree (-2) □—□—□—□—□ Strongly
Agree (2)

9 I felt confident that the emotional labels predicted
by the system matched my intended emotion.
Strongly Disagree (-2) □—□—□—□—□ Strongly
Agree (2)

10 I had to figure out too many things before I could
use the system properly.
Strongly Disagree (-2) □—□—□—□—□ Strongly
Agree (2)

11 I feel the system responded quickly enough to be
used in real-time interactions.
Strongly Disagree (-2) □—□—□—□—□ Strongly
Agree (2)

12 I noticed a noticeable delay between my speech and
the system’s feedback.
Strongly Disagree (-2) □—□—□—□—□ Strongly
Agree (2)

Please describe your experience with Amser+. What
aspects did you particularly enjoy? Are there any areas
where you think the system could be improved?

Table VIII summarizes participants’ responses to the 12-
item usability questionnaire. The results demonstrate an over-
all positive perception of the Amser+ system.

For positively worded items (Q1, Q3, Q5, Q7, Q9, Q11),
participants reported high levels of agreement. In particular,
Q7 and Q3 received the highest average ratings of 1.1 and
1.0, respectively, indicating the system’s learnability and in-
teraction friendliness. Q11, which specifically evaluated real-
time responsiveness, also scored highly (1.0), suggesting that
most users found the system sufficiently fast for real-time
applications.

For negatively worded items (Q2, Q4, Q6, Q8, Q10, Q12),
the average scores were consistently below zero; after reverse
scoring, this indicates favorable user sentiment. For instance,
Q10 received the lowest raw average (−1.2), suggesting that
participants strongly disagreed with the statement and found
the system easy to start using. Similarly, Q12 scored −0.9,
indicating that most users did not perceive any significant
latency during interaction.

Taken together, these results indicate that Amser+ demon-
strates strong usability, with both direct and reverse-scored
items showing consistent user satisfaction.

VII. DISCUSSION

A. Noise Robustness in Real-World Scenarios.
In practical scenarios such as in-car environments, open

offices, or smart homes, ambient noise is often inevitable and
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TABLE VIII
THE RESULT OF QUESTIONNAIRE.

Strongly Disagree (-2) Disagree (-1) Not sure (0) Agree (1) Strongly Agree (2) Average Rating
Q1 1 1 2 2 4 0.7
Q2 4 2 2 2 0 -0.8
Q3 0 1 3 1 5 1.0
Q4 3 3 3 1 0 -0.8
Q5 1 2 1 2 4 0.6
Q6 4 1 1 3 1 -0.4
Q7 0 1 1 4 4 1.1
Q8 5 2 2 1 0 -1.1
Q9 2 1 1 4 2 0.3
Q10 5 2 3 0 0 -1.2
Q11 0 1 1 5 3 1.0
Q12 4 2 3 1 0 -0.9

varies significantly in intensity and spectral characteristics.
To mitigate the impact of noise, our system employs Mel-
spectrogram features, which are perceptually motivated and
emphasize frequency components most relevant to human
auditory perception. This naturally suppresses irrelevant high-
frequency noise and improves robustness in moderately noisy
conditions.

Moreover, in real-world applications where noise levels are
particularly high, Amser+ can be extended with a lightweight
real-time speech enhancement module on the mobile device
such as [31], [32], [79]. This module, running in parallel
with audio acquisition, would enhance human speech signals
and attenuate background noise before feature extraction.
Such integration is orthogonal to our current compression
and recognition pipeline and can further improve performance
without modifying the downstream network. Exploring such
enhancements remains an important direction for future work
in extreme acoustic environments.

B. Handling Overlapping Speech.

The Amser+ system is not explicitly designed to address
overlapping speech scenarios, where multiple speakers speak
simultaneously within the same audio segment. Such situ-
ations are common in real-world mobile contexts, such as
cafés, group conversations, or shared office spaces. In the
presence of overlapping speech, the input signal may contain
mixed acoustic and emotional cues from different speak-
ers, which poses significant challenges for both automatic
speech recognition (ASR) and emotion classification. ASR
performance may degrade due to misalignment of speaker-
dependent phonetic content, and emotion recognition may
fail to isolate speaker-specific emotional expressions, resulting
in ambiguous or inaccurate predictions. Effectively handling
overlapping speech would require incorporating techniques
such as speech separation (e.g., source separation networks)
or speaker diarization, which can isolate individual speaker
streams from a mixture. These components, however, intro-
duce additional model complexity and may require speaker-
level supervision or computational resources not yet optimized
for mobile deployment. We consider this an important but
orthogonal extension to our current system design and leave it
as a promising direction for future work aiming at enhanced
multi-speaker robustness.

C. Personalization and Speaker Adaptation

In mobile environments where frequent users interact with
the system, personalization can play a crucial role in im-
proving recognition accuracy and user satisfaction. Although
Amser+ is designed as a speaker-independent model to ensure
broad generalizability, its modular structure allows for the
potential integration of user-specific adaptation. For instance,
lightweight fine-tuning or embedding adaptation techniques
could be applied to the ASR or emotion recognition modules
based on a user’s historical speech data. Such personalization
has been shown to improve recognition accuracy by better
capturing individual speech traits, emotional expression styles,
and linguistic patterns. Moreover, recent advances in on-device
continual learning and speaker embedding-based personaliza-
tion provide promising pathways for incremental, privacy-
preserving adaptation without compromising latency or model
efficiency. However, we note that there is currently a lack
of large-scale, long-duration datasets from single users that
would enable comprehensive personalization studies. We leave
the collection and evaluation of such data as an important
direction for future work to enhance system robustness and
personalization in long-term deployments.

VIII. CONCLUSION

We propose Amser+, a real-time speech emotion recognition
framework for mobile devices. By offloading deep neural
network computations to a server, the system reduces the load
on mobile devices. Speech signals are compressed using Fbank
features and SVD, minimizing storage requirements while
preserving key emotional cues. A pre-trained RoBERTa model
further enhances emotion recognition accuracy by incorporat-
ing external knowledge. Extensive experiments validate the
system’s feasibility, showing it achieves high accuracy and low
energy consumption, making it ideal for mobile-based emotion
recognition applications.
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learning moiré qr code decryption from simulated data,” in IEEE IN-
FOCOM 2023-IEEE Conference on Computer Communications. IEEE,
2023, pp. 1–10.

[12] Z. Liu, M. Sun, T. Zhou, G. Huang, and T. Darrell, “Rethinking the
value of network pruning,” arXiv preprint arXiv:1810.05270, 2018.

[13] K. Ullrich, E. Meeds, and M. Welling, “Soft weight-sharing for neural
network compression,” arXiv preprint arXiv:1702.04008, 2017.

[14] K. Dokic, M. Martinovic, and D. Mandusic, “Inference speed and
quantisation of neural networks with tensorflow lite for microcontrollers
framework,” in 2020 5th South-East Europe Design Automation, Com-
puter Engineering, Computer Networks and Social Media Conference
(SEEDA-CECNSM). IEEE, 2020, pp. 1–6.

[15] J. H. Cho and B. Hariharan, “On the efficacy of knowledge distillation,”
in Proceedings of the IEEE/CVF international conference on computer
vision, 2019, pp. 4794–4802.

[16] D. Ding, L. Yang, Y.-C. Chen, and G. Xue, “Leakage or
identification: Behavior-irrelevant user identification leveraging leakage
current on laptops,” Proc. ACM Interact. Mob. Wearable Ubiquitous
Technol., vol. 5, no. 4, Dec. 2022. [Online]. Available: https:
//doi.org/10.1145/3494984

[17] W. Park, D. Kim, Y. Lu, and M. Cho, “Relational knowledge distilla-
tion,” in Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, 2019, pp. 3967–3976.

[18] J. Michalakes and M. Vachharajani, “Gpu acceleration of numerical
weather prediction,” in 2008 IEEE International Symposium on Parallel
and Distributed Processing. IEEE, 2008, pp. 1–7.

[19] S. Li, C. Wu, H. Li, B. Li, Y. Wang, and Q. Qiu, “Fpga acceleration
of recurrent neural network based language model,” in 2015 IEEE
23rd Annual International Symposium on Field-Programmable Custom
Computing Machines. IEEE, 2015, pp. 111–118.

[20] E. Nurvitadhi, J. Sim, D. Sheffield, A. Mishra, S. Krishnan, and D. Marr,
“Accelerating recurrent neural networks in analytics servers: Comparison
of fpga, cpu, gpu, and asic,” in 2016 26th International Conference on
Field Programmable Logic and Applications (FPL). IEEE, 2016, pp.
1–4.

[21] D. Wu, A. Chen, T. E. Ng, G. Wang, and H. Wang, “Accelerated service
chaining on a single switch asic,” in Proceedings of the 18th ACM
Workshop on Hot Topics in Networks, 2019, pp. 141–149.

[22] K. Baker, “Singular value decomposition tutorial,” The Ohio State
University, vol. 24, p. 511, 2005.

[23] S. Ghosh, U. Tyagi, S. Ramaneswaran, H. Srivastava, and D. Manocha,
“Mmer: Multimodal multi-task learning for speech emotion recognition,”
arXiv preprint arXiv:2203.16794, 2022.

[24] I. Gat, H. Aronowitz, W. Zhu, E. Morais, and R. Hoory, “Speaker nor-
malization for self-supervised speech emotion recognition,” in ICASSP
2022. IEEE, 2022, pp. 7342–7346.

[25] A. Triantafyllopoulos, S. Liu, and B. W. Schuller, “Deep speaker
conditioning for speech emotion recognition,” in ICME. IEEE, 2021,
pp. 1–6.

[26] H. Xu, H. Zhang, K. Han, Y. Wang, Y. Peng, and X. Li, “Learning
alignment for multimodal emotion recognition from speech,” Proc.
Interspeech 2019, pp. 3569–3573, 2019.

[27] S. Yoon, S. Byun, S. Dey, and K. Jung, “Speech emotion recognition
using multi-hop attention mechanism,” in ICASSP 2019. IEEE, 2019,
pp. 2822–2826.

[28] Y. Wang, A. Boumadane, and A. Heba, “A fine-tuned wav2vec 2.0/hubert
benchmark for speech emotion recognition, speaker verification and spo-
ken language understanding,” arXiv preprint arXiv:2111.02735, 2021.

[29] C. Busso, M. Bulut, C.-C. Lee, A. Kazemzadeh, E. Mower, S. Kim, J. N.
Chang, S. Lee, and S. S. Narayanan, “Iemocap: Interactive emotional
dyadic motion capture database,” Language resources and evaluation,
vol. 42, pp. 335–359, 2008.

[30] K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick, “Momentum contrast
for unsupervised visual representation learning,” in CVPR, 2020, pp.
9729–9738.

[31] A. Pandey and D. Wang, “Tcnn: Temporal convolutional neural network
for real-time speech enhancement in the time domain,” in ICASSP 2019-
2019 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, 2019, pp. 6875–6879.

[32] K. Tan and D. Wang, “A convolutional recurrent neural network for real-
time speech enhancement.” in Interspeech, vol. 2018, 2018, pp. 3229–
3233.

[33] Y. Lu, R. Wang, D. Ding, H. Zhang, L. Zhang, L. Yang, Y.-C. Chen,
and G. Xue, “Amser: Accelerate mobile speech emotion recognition
with signal compression,” in ICASSP 2025-2025 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 2025, pp. 1–5.

[34] H. Pan, L. Qiu, B. Ouyang, S. Zheng, Y. Zhang, Y.-C. Chen, and G. Xue,
“Pmsat: Optimizing passive metasurface for low earth orbit satellite
communication,” in Proceedings of the 29th Annual International Con-
ference on Mobile Computing and Networking, 2023, pp. 1–15.

[35] Y. Song, H. Pan, L. Ge, L. Qiu, S. Kumar, and Y.-C. Chen, “Microsurf:
Guiding energy distribution inside microwave oven with metasurfaces,”
in Proceedings of the 30th Annual International Conference on Mobile
Computing and Networking, 2024, pp. 1346–1360.

[36] R. Ma, S. Zheng, H. Pan, L. Qiu, X. Chen, L. Liu, Y. Liu, W. Hu, and
J. Ren, “Automs: Automated service for mmwave coverage optimiza-
tion using low-cost metasurfaces,” in Proceedings of the 30th Annual
International Conference on Mobile Computing and Networking, 2024,
pp. 62–76.

[37] Y. Fu, S. Wang, L. Zhong, L. Chen, J. Ren, and Y. Zhang, “Ultrasr:
Silent speech reconstruction via acoustic sensing,” IEEE Transactions
on Mobile Computing, vol. 23, no. 12, pp. 12 848–12 865, 2024.

[38] ——, “Svoice: Enabling voice communication in silence via acoustic
sensing on commodity devices,” in Proceedings of the 20th ACM
Conference on Embedded Networked Sensor Systems, ser. SenSys ’22.
New York, NY, USA: Association for Computing Machinery, 2023, p.
622–636. [Online]. Available: https://doi.org/10.1145/3560905.3568530

[39] Y. Fu, Y. Zhang, H. Pan, Y. Lu, X. Li, L. Chen, J. Ren, X. Li,
X. Zhang, and Y. Zhang, “Pushing the limits of acoustic spatial
perception via incident angle encoding,” Proc. ACM Interact. Mob.
Wearable Ubiquitous Technol., vol. 8, no. 2, May 2024. [Online].
Available: https://doi.org/10.1145/3659583

[40] Y. Fu, Y. Zhang, Y. Lu, L. Qiu, Y.-C. Chen, Y. Wang, M. Wang,
Y. Li, J. Ren, and Y. Zhang, “Adaptive metasurface-based acoustic
imaging using joint optimization,” in Proceedings of the 22nd
Annual International Conference on Mobile Systems, Applications and
Services, ser. MOBISYS ’24. New York, NY, USA: Association
for Computing Machinery, 2024, p. 492–504. [Online]. Available:
https://doi.org/10.1145/3643832.3661863

[41] H. Pan, Y. Wang, J. Liu, R. Ma, L. Qiu, Y.-C. Chen, G. Xue, and J. Ren,
“Cgmm: Non-invasive continuous glucose monitoring in wearables
using metasurfaces,” in Proceedings of the 31th Annual International
Conference on Mobile Computing and Networking, 2025, pp. 1–16.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2025.3576016

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on June 16,2025 at 16:11:06 UTC from IEEE Xplore.  Restrictions apply. 



IEEE INTERNET OF THINGS JOURNAL 13

[42] H. Kong, L. Lu, J. Yu, Y. Chen, X. Xu, and F. Lyu, “Toward multi-
user authentication using wifi signals,” IEEE/ACM Transactions on
Networking, vol. 31, no. 5, pp. 2117–2132, 2023.

[43] M. Chen, Y. Ma, Y. Li, D. Wu, Y. Zhang, and C.-H. Youn, “Wearable
2.0: Enabling human-cloud integration in next generation healthcare
systems,” IEEE Communications Magazine, vol. 55, no. 1, pp. 54–61,
2017.

[44] H. Kong, C. Huang, J. Yu, and X. Shen, “A survey of mmwave radar-
based sensing in autonomous vehicles, smart homes and industry,” IEEE
Communications Surveys & Tutorials, 2024.

[45] L. Fridman, P. Langhans, J. Lee, and B. Reimer, “Driver gaze region
estimation without use of eye movement,” IEEE Intelligent Systems,
vol. 31, no. 3, pp. 49–56, 2016.

[46] K. Meesublak and T. Klinsukont, “A cyber-physical system approach
for predictive maintenance,” in 2020 ieee international conference on
smart internet of things (smartiot). IEEE, 2020, pp. 337–341.

[47] Y. Wang, H. Pan, L. Qiu, L. Zhong, J. Liu, R. Ma, Y.-C. Chen,
G. Xue, and J. Ren, “Gpms: Enabling indoor gnss positioning using
passive metasurfaces,” in Proceedings of the 30th Annual International
Conference on Mobile Computing and Networking, 2024, pp. 1424–
1438.

[48] M. M. Baig, H. GholamHosseini, and M. J. Connolly, “Mobile health-
care applications: system design review, critical issues and challenges,”
Australasian physical & engineering sciences in medicine, vol. 38, pp.
23–38, 2015.

[49] Y. Wang and Y.-C. Chen, “Non-contact thermal haptics for vr,” in
Adjunct Proceedings of the 2023 ACM International Joint Conference
on Pervasive and Ubiquitous Computing & the 2023 ACM International
Symposium on Wearable Computing, 2023, pp. 386–390.

[50] R. T. Azuma, “A survey of augmented reality,” Presence: teleoperators
& virtual environments, vol. 6, no. 4, pp. 355–385, 1997.

[51] L. Chen, B. Yu, Y. Fu, J. Ren, H. Pan, J. Gummeson, and Y. Zhang,
“Pushing wireless charging from station to travel,” in Proceedings of
the 30th Annual International Conference on Mobile Computing and
Networking, 2024, pp. 46–61.

[52] H. Pan and L. Qiu, “Passive metasurface-based low earth orbit ground
station design,” Tsinghua Science and Technology, vol. 30, no. 1, pp.
148–160, 2024.

[53] ——, “Passive metasurface for interacting with electromagnetic signals,”
Sep. 19 2024, uS Patent App. 18/608,421.

[54] T. Zhang, A. Chowdhery, P. Bahl, K. Jamieson, and S. Banerjee, “The
design and implementation of a wireless video surveillance system,”
in Proceedings of the 21st Annual International Conference on Mobile
Computing and Networking, 2015, pp. 426–438.

[55] Y. Li, A. Padmanabhan, P. Zhao, Y. Wang, G. H. Xu, and R. Ne-
travali, “Reducto: On-camera filtering for resource-efficient real-time
video analytics,” in Proceedings of the Annual conference of the ACM
Special Interest Group on Data Communication on the applications,
technologies, architectures, and protocols for computer communication,
2020, pp. 359–376.

[56] C. Canel, T. Kim, G. Zhou, C. Li, H. Lim, D. G. Andersen, M. Kamin-
sky, and S. Dulloor, “Scaling video analytics on constrained edge nodes,”
Proceedings of Machine Learning and Systems, vol. 1, pp. 406–417,
2019.

[57] S. Naderiparizi, P. Zhang, M. Philipose, B. Priyantha, J. Liu, and
D. Ganesan, “Glimpse: A programmable early-discard camera architec-
ture for continuous mobile vision,” in Proceedings of the 15th Annual
International Conference on Mobile Systems, Applications, and Services,
2017, pp. 292–305.

[58] J. Emmons, S. Fouladi, G. Ananthanarayanan, S. Venkataraman,
S. Savarese, and K. Winstein, “Cracking open the dnn black-box: Video
analytics with dnns across the camera-cloud boundary,” in Proceedings
of the 2019 workshop on hot topics in video analytics and intelligent
edges, 2019, pp. 27–32.

[59] S. Jiang, Z. Lin, Y. Li, Y. Shu, and Y. Liu, “Flexible high-resolution
object detection on edge devices with tunable latency,” in Proceedings
of the 27th Annual International Conference on Mobile Computing and
Networking, 2021, pp. 559–572.

[60] B. Schuller, G. Rigoll, and M. Lang, “Hidden markov model-based
speech emotion recognition,” in ICASSP, vol. 2. IEEE, 2003, pp. II–1.

[61] G. Trigeorgis, F. Ringeval, R. Brueckner, E. Marchi, M. A. Nicolaou,
B. Schuller, and S. Zafeiriou, “Adieu features? end-to-end speech
emotion recognition using a deep convolutional recurrent network,” in
ICASSP. IEEE, 2016, pp. 5200–5204.

[62] T. Seehapoch and S. Wongthanavasu, “Speech emotion recognition using
support vector machines,” in 2013 KST. IEEE, 2013, pp. 86–91.

[63] C.-C. Lee, E. Mower, C. Busso, S. Lee, and S. Narayanan, “Emotion
recognition using a hierarchical binary decision tree approach,” Speech
Communication, vol. 53, no. 9-10, pp. 1162–1171, 2011.

[64] M. M. El Ayadi, M. S. Kamel, and F. Karray, “Speech emotion
recognition using gaussian mixture vector autoregressive models,” in
ICASSP, vol. 4. IEEE, 2007, pp. IV–957.

[65] A. Stuhlsatz, C. Meyer, F. Eyben, T. Zielke, G. Meier, and B. Schuller,
“Deep neural networks for acoustic emotion recognition: Raising the
benchmarks,” in ICASSP. IEEE, 2011, pp. 5688–5691.

[66] S. Yoon, S. Byun, and K. Jung, “Multimodal speech emotion recognition
using audio and text,” in 2018 SLT. IEEE, 2018, pp. 112–118.

[67] J.-B. Delbrouck, N. Tits, M. Brousmiche, and S. Dupont, “A transformer-
based joint-encoding for emotion recognition and sentiment analysis,”
ACL 2020, p. 1, 2020.

[68] A. Dax, “The eckart-young theorem and ky fan’s maximum principle:
Two sides of the same coin,” in Householder Symposium XVIII on
Numerical Linear Algebra. Citeseer, 2011, p. 49.

[69] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Librispeech: an asr
corpus based on public domain audio books,” in 2015 IEEE international
conference on acoustics, speech and signal processing (ICASSP). IEEE,
2015, pp. 5206–5210.

[70] R. Ardila, M. Branson, K. Davis, M. Henretty, M. Kohler, J. Meyer,
R. Morais, L. Saunders, F. M. Tyers, and G. Weber, “Com-
mon voice: A massively-multilingual speech corpus,” arXiv preprint
arXiv:1912.06670, 2019.

[71] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors
for word representation,” in EMNLP, 2014, pp. 1532–1543.

[72] Z. Yu, J. Yu, Y. Cui, D. Tao, and Q. Tian, “Deep modular co-attention
networks for visual question answering,” in CVPR, 2019, pp. 6281–6290.

[73] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” NeurlPS,
vol. 30, 2017.

[74] P. Khosla, P. Teterwak, C. Wang, A. Sarna, Y. Tian, P. Isola,
A. Maschinot, C. Liu, and D. Krishnan, “Supervised contrastive learn-
ing,” NeurlPS, vol. 33, pp. 18 661–18 673, 2020.

[75] J. Tang, L. Zhang, Y. Lu, D. Ding, L. Yang, Y. Chen, M. Bian, X. Li,
and G. Xue, “Vcemo: Multi-modal emotion recognition for chinese
voiceprints,” arXiv preprint arXiv:2408.13019, 2024.

[76] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[77] A. Paszke, S. Gross, F. Massa et al., “Pytorch: An imperative style,
high-performance deep learning library,” Advances in neural information
processing systems, vol. 32, 2019.

[78] S. U. S. (SUS). [Online]. Available: https://www.usability.gov/
how-to-andtools/methods/system-usability-scale.html.

[79] Y. R. Pei, R. Shrivastava, and F. Sidharth, “Real-time speech enhance-
ment on raw signals with deep state-space modeling,” arXiv preprint
arXiv:2409.03377, 2024.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2025.3576016

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on June 16,2025 at 16:11:06 UTC from IEEE Xplore.  Restrictions apply. 


