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Abstract: In recent years, fire disasters caused by charging electric bicycles/mopeds (e-bikes) have
been increasing, causing catastrophic loss of life and property; Worse still, existing fire warning
systems are costly to install and maintain, and they work after the accident occurs. Some existing
works have proposed using power meters or similar sensors in the power grid to monitor e-bike
charging health. However, the use of additional equipment makes them challenging to deploy. Others
use the sound or electromagnetic signals emitted by e-bikes for monitoring; however, they suffer
from limited monitoring distances. To solve this problem, we propose SingMonitor, a scheme to
remotely monitor e-bike charging status using mobile device microphones. The charging e-bike
generates a unique current signal, which is then transmitted through the power grid and drives the
mobile devices’ power supply to generate sound, which is then captured by a microphone. Based
on this principle and the proposed template-matching method, SingMonitor can identify the e-bike
charging status. Experiments show that SingMonitor achieved an F1 score of 0.94 in identifying 10
e-bike charging status, with a detection distance of 9 m+.

Keywords: e-bike; power supply; power factor correction; template matching

1. Introduction

In recent years, electric bicycles/electric mopeds (here, both are referred to as “e-
bikes”) have become increasingly popular, corresponding to the growing environmental
awareness and technological advances in the e-bike industry, with the global e-bike market
reaching 17.83 billion USD in 2021 [1]. Although e-bikes are convenient, they also generate
certain safety threats. For example, there were nearly 18, 000 fire disasters caused by
charging e-bikes in China in 2021 [2].

Similarly, in October 2022, the USA recalled approximately 22, 000 e-bikes whose
lithium batteries could ignite, explode, or spark, posing fire, explosion, and burn hazards
to consumers [3]. Low-quality batteries or chargers are some of the main reasons for these
disasters [4,5]. In Section 3.1, we show how charger or battery quality issues can influence
a battery’s capacity and even increase the risk of fire while charging. Worse yet, over
time and with improper use (charging immediately after parking, etc.), even high-quality
chargers and batteries can develop issues and become unreliable [6,7].

To prevent these disasters, many systems are dedicated to fire detection and alert,
which can significantly reduce the damage caused by e-bike fires. For example, the Fire
Alarm Control Unit (FACU) [8] is the mainstream commercial fire warning system. FACU
consists of three parts: initiation devices (including various sensors and pull stations), the
control panel, and sirens and fire-suppression devices. Refs. [9–15] focused on improving
FACU systems with IoT technology. Such studies need to deploy many sensors or commu-
nication nodes with integrated sensors for rapid fire detection and alarm. They differ in the
hardware and communication protocols used.
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Refs. [16,17] analyzed data captured by closed-circuit television or webcams using
image-processing technology to detect and track fires. However, these methods are costly
to install and maintain and only work after a fire hazard occurs.

Some appliance detection methods can also monitor the charging health of e-bikes. For
example, some of them use sensors to directly obtain the operating current, voltage, and
load consumption of the appliances in the circuit [18–24]. Others use side-channel methods
to identify appliances and their operating status by the electromagnetic [25,26] or acoustic
signals [27,28] generated when the appliance is in operation. However, most of these
methods require extra hardware, which makes them difficult for large-scale deployment,
and some have limited monitoring distances.

Some battery-monitoring methods [29,30] use sensors to obtain information, such as
the voltage and current of the battery to monitor the battery. Ref. [31] trained an LSTM
model with voltage, temperature, and other information to monitor and protect the battery.
Ref. [32] predicted the battery status through an electrochemical model. These methods
require extra hardware devices to obtain information, such as the current and voltage,
which increases the system’s cost.

To solve this problem, in this paper, we propose SingMonitor—a scheme to remotely
monitor e-bike charging health using mobile device microphones. SingMonitor can monitor
the charger or battery for faults during daily charging, thereby, slowing battery capacity
loss and, thus, preventing potential fire hazards. We created the SingMonitor system based
on observations that:

(1) The charging e-bike can inject unique current signals into the power grid. Currently,
e-bikes commonly use three-stage battery chargers [33]. At different charging stages, the
power factor correction (PFC) circuit inside the e-bike charger can inject different feedback
currents, i.e., PFC signals, into the power grid.

(2) The PFC signals can transmit through the power grid. As shown in Figure 1, PFC
signals can be propagated along wires throughout the power grid. A detailed explanation
can be found in Section 3.3.

(3) The PFC signals can drive the power supply at the other end of the grid to generate
sounds. When the power supply of another appliance connected to the same distribution
system receives this signal, it will emit a sound under electromagnetic forces.

(4) The sounds can be captured by nearby mobile devices and used to monitor the
e-bike’s charging health. By analyzing this sound signal, SingMonitor can obtain the current
charging stage of the e-bike as well as the charge duration. After comparison with the
normal charging pattern (see Section 3.1), the system can determine whether there is a
problem with the charger and battery, thus, monitoring the e-bike’s charging health.

Room B

PFC signals PFC signals

Room A

9m

Figure 1. Diagram of the signal-propagation process. The PFC signal generated by the charger travels
along the grid and affects the power supply to the smart speaker causing it to emit sound.

In developing the proposed SingMonitor, we encountered several challenges: (1) In-
terference of noises. The PFC signals are exposed to background noise interference from
the power grid, the environment, the power supply’s internal components, and the sound
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acquisition equipment during the propagation and conversion to sound signals. PFC
signals generated by other appliances can also interfere with the e-bike’s PFC signal.

(2) It is difficult to distinguish different e-bikes and their charging stages in a com-
plex appliance environment. Considering that the types, numbers, and combinations of
appliances in different homes vary, we need to design a method that can be trained with
only e-bike data and still perform well in complex appliance environments to improve our
system’s usability. (3) It is also difficult to define a healthy charging status.

We then proposed many schemes to solve these problems: (1) We proposed a noise
cancellation method based on variational mode decomposition (VMD), periodicity detec-
tion, and spectral subtraction. We adopted VMD and periodicity detection to eliminate
the aperiodic background noise. To obtain clean e-bike charge-stage templates (see Sec-
tion 5), we employed spectral subtraction to remove the interference of other appliances.
(2) We proposed a template-matching-based scheme and designed a new distance metric to
distinguish different e-bikes and their charging stages.

We defined a new similarity metric by compared the differences in center frequency
and bandwidth based on the characteristic that the center frequency and bandwidth of PFC
signals generated by different appliances and e-bikes’ different charging stages are different.
(3) We proposed to build the normal charging pattern by calculating the duration of different
charging stages in the registration phase (see Section 5). The system compares the charge
duration measured during the health-monitoring phase with the normal charging pattern.
If the gap between the two exceeds a threshold (which is dynamically adjusted), the system
considers the e-bike to be in an unhealthy charging status.

Our contributions can be summarized as follows:

1. To the best of our knowledge, we are the first to use sound emitted by the power
supply to monitor e-bike charging health.

2. We propose a noise-cancellation scheme using VMD, periodicity detection, and spectral
subtraction to cancel both background noise and interference from other appliances.

3. We propose a template-matching-based scheme and designed a new distance metric
to distinguish different charging stages.

4. We defined healthy charging states by comparing the duration of each charging stage
measured by the system with the normal charging pattern.

5. We evaluated SingMonitor in real-world scenarios, and our experiments show that
SingMonitor achieved an F1 score of 0.94 in identifying 10 e-bike charging stages with
a detection distance of 9 m+.

2. Related Work

In this section, we review techniques in four areas relevant to this paper, i.e., fire alarm
systems, electrical appliance detection, battery monitoring, PFC, and switching-mode
power supply (SMPS).

2.1. Fire Alarm System

There are many existing studies that focus on improving fire alarm systems to prevent
fire disasters. For example, refs. [9–15] improved FACU’s performance by changing the
sensors and boosting the communication efficiency between sensor nodes. Refs. [16,17]
used image-processing technology to enable the rapid detection and treatment of fires.
Ref. [34] employed a camera with an optical and thermal lens for kitchen fire warnings.
However, a common problem with these methods is the high installation and maintenance
costs; additionally, camera-based methods may raise privacy concerns.

2.2. Electrical Appliance Detection

Many studies in appliance detection can also monitor the charging health of e-bikes.
We split such research into two categories based on the channel they used.

Direct load monitoring: Such studies install sensors directly in the circuit to obtain
current and voltage information. Intrusive appliance monitoring installs sensors near each
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appliance. Ref. [18] integrated several types of sensors within the socket, which was used
to collect the usage of nearby appliances as well as environmental data. Ref. [19] used
smart plugs. However, intrusive methods are costly due to the extensive use of sensors.

There are also many methods using non-intrusive load monitoring (NALM) instead.
NALM [20] typically employs only one sensor to monitor the circuit’s total power consump-
tion. This information is utilized to analyze the power consumption pattern of individual
appliances and other information, such as the appliance usage time. Ref. [21] estimated
the number of individual loads and their energy consumption by analyzing the voltage
and current waveform of the total load. Ref. [22] analyzed household appliance power con-
sumption patterns using a single sensor to obtain real power data. Refs. [23,24] employed
current harmonics as the core feature to identify load types. Nevertheless, NALM is also
difficult to use in large-scale deployment because it requires extra hardware.

Side-channel: Side-channel technology uses the various physical signals generated
by appliances during their operation to enable appliance detection. For example, Elec-
triSense [25] utilizes electromagnetic interference (EMI) from the switching-mode power
supply to obtain individual appliance usage information. Ref. [26] collected power-draw
information using a mobile electromagnetic field (EMF) sensor.

Ref. [27] recognized appliances by the sounds users make when using the appliance
and the sounds produced by the appliance itself. Ref. [28] correlated an appliance’s inherent
acoustic noise with its energy consumption pattern and collected ambient sound to obtain
its energy consumption pattern. However, this method has a limited monitoring range. In
addition, all these works rely on extra sensors, making them problematic for large-scale
deployment.

2.3. Battery Monitoring

Many studies focus on battery monitoring. For example, ref. [29] measured the
battery’s voltage and temperature by installing wireless sensors inside each cell to assess
the battery’s state of health. Ref. [30] designed an IoT system to obtain information, such
as the battery voltage, and to upload it to the control interface to help the user know
of and deal with any abnormal status of the battery in time. Ref. [31] designed a battery
management system using sensors to obtain parameters, such as the battery voltage, current,
and temperature. These parameters were used to train an LSTM model to monitor and
protect the battery status.

Ref. [32] proposed an electrochemical model that monitors the cell state by calculating
parameters, such as the open-circuit voltage and liquid-phase diffusion. The calculation of
these parameters relies on the readings of current, voltage, and other data. However, these
methods require extra hardware to obtain data, such as the current and voltage, which
raises the system cost. Compared with these direct-style monitoring methods, we propose
a side-channel method that does not require the current and voltage. Furthermore, these
methods are mainly for electric vehicles or lithium batteries, which are not necessarily
applicable to our target.

2.4. PFC and Switching-Mode Power Supply

Many other works use PFC or SMPS signals. For example, ref. [35] found that PFC
signals can precisely reveal information about devices’ power-draw, and they implemented
a power side-channel attack by utilizing this trait to infer computer application launching.
Changes in the computer’s power consumption can affect the high-frequency voltage ripple
generated by its PFC circuits, and NoDE [36] exploits this phenomenon to achieve data
exfiltration.

Ref. [37] attacked air-gapped, audio-gapped systems by planting malware to manipu-
late the computer’s SMPS to emit specific frequency sounds. CapSpeaker [38] employs the
capacitor’s inverse piezoelectric effect to issue malicious voice commands to attack nearby
smart speakers. Ref. [39] used the sound from the SMPS and other noises produced by
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appliances to identify different appliances and used their locations for indoor localization.
We were inspired by these works.

3. Background

In Section 1, we describe how SingMonitor works: The charging e-bike can inject
unique PFC signals into the power grid. The PFC signals are then transmitted through the
power grid. The transmitted PFC signals can drive the power supply at the other end of the
grid to generate sound. The sounds can be captured by nearby mobile devices and used to
monitor the charging health of e-bikes. In this section, we first discuss the causes and effects
of e-bike overcharging; second, we describe why e-bikes can generate a unique PFC signal
when charging; then, we describe why this PFC signal can propagate through the grid; and
finally, we describe why this PFC signal can drive the power supply to produce sound.

3.1. E-Bike Overcharging and Its Causes

E-bike overcharging: E-bikes are mainly powered by lead-acid and lithium batteries,
which have current market shares of 30.83% and 46.41%, respectively, [40]. Overcharging
can cause e-bike battery capacity loss or even fires. Overcharging for lead-acid batteries
raises the internal temperature, producing harmful gases and drying out the electrolyte,
ultimately leading to positive grid corrosion.

Grid corrosion can significantly shorten the battery life; however, lead-acid batteries
are generally less susceptible to fire [41]. Fires caused by overcharging typically occur on
lithium batteries. Lithium batteries usually consist of a positive and negative pole material
and a separator that divides the two. Overcharging can cause severe side reactions within
the lithium battery, which can cause the internal separator to rupture, resulting in severe
thermal runaway and, eventually, fire [42].

Causes of e-bike overcharging: E-bike chargers mainly use three-stage charging:
constant current, constant voltage, and float charging. Figure 2 shows that the charger
indicator is red during the constant current and constant voltage stages. In the experiments,
we use an ammeter to measure the change in current to distinguish between these two
stages. When the battery is charged to 80%∼95%, the charger enters the float stage, and the
indicator light turns green.

The charger monitors the charging current and the battery voltage via an internal
feedback circuit, which decides when to switch charging stages. When the charger charges
the battery with a high current or voltage for a long time due to quality problems, it cannot
switch to the float stage in time and the battery will be overcharged, resulting in a loss of
capacity or even a fire. Furthermore, when the battery is faulty and thus cannot reach its
rated voltage during charging, the charger will continue to supply power at a high current,
thus, causing the battery to overcharge.

The duration of each stage varies depending on the charger and the battery. We
calculated the duration of each charging stage during initialization (see Section 5) to build
the normal charging pattern for the corresponding e-bike. Long-term float charging is
generally harmless, and we are more concerned with the duration of the constant-current
and constant-voltage stages.

Red Green

Constant Current Constant Voltage Float

Charge Voltage

Charge Current

Indicator Light

Figure 2. Three-stage charging.
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3.2. E-Bike Charging Generates Unique Power Factor Correction Signals

In this section, we explain why e-bike charging can generate unique PFC signals.
Power factor (PF): In electrical engineering, the power factor is defined as the ratio

between the real power consumed by a load and the total real-plus-reactive power, which
is also known as the total apparent power [43], i.e., PF = Preal/Papparent. Figure 3 shows
that the PF can reach 1 when the input current can follow the instantaneous line voltage
without distortion. This means that the total apparent power is the lowest while consuming
the same real power, thus realizing the most efficient use of electrical energy. In other cases,
the PF is less than 1, meaning that electrical energy is wasted in the distribution system.

Power factor correction (PFC): PFC circuits [44] can increase the PF to reduce power
losses by eliminating high harmonics through low-pass filters or by shaping the input cur-
rent. Therefore, PFC circuits are required in many types of electrical appliances. According
to the IEC61000-3-2 standard [45], PFC circuits are required in power adapters for lighting
devices with more than 5 W and Class D devices with more than 75 W. The PFC circuit in
e-bike chargers is implemented by a pulse width modulator (PWM). A PWM modulates
the current by periodically generating high-frequency ripples to make the input current
follow the instantaneous line voltage.

The modulation of the input current by PFC circuits injects feedback currents into the
grid, i.e., PFC signals. The research [35] shows that load power consumption information
can modulate the amplitude and frequency of PFC signals. The features of PFC signals
can also be affected by the design and manufacturing process of PFC circuits. Therefore,
as shown in Figure 4, there are distinct differences in the spectrum of the PFC signals
generated by different e-bikes, appliances, and charging stages of the same e-bike. As of
the difference between PFC signals, SingMonitor can accurately analyze whether e-bikes
are charging and which charging stage they are in from the mixed PFC signals generated
by multiple appliances.
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Figure 3. Effect of the current waveform on the power factor.
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Figure 4. PFC signals generated by different e-bikes and appliances: (a–c) Generated by the XDAO
(160 W) e-bike during different charging stages. (d) Generated by the NIU (160 W) e-bike during the
constant current stage. (e) The superimposed signal generated when YADEA (180 W) and XDAO
work simultaneously. (d–f) Generated by Redmi K20Pro (27 W), Dell desktop (360 W), Projector
(225 W), PHILIPS Light (18 W), and HP Laptop (90 W), respectively.

3.3. Propagation of PFC Signals in the Power Grid

This section explains how PFC signals propagate through the grid. A typical house-
hold grid consists of a distribution box and multiple distributed sockets with appliances
connected in parallel. Figure 5 is an abstract illustration of a typical household grid. For the
convenience of discussion, we assume that two sockets are connected to the e-bike battery
or the smart speaker.

The following will explain how the current I0 containing the PFC signal affects the
input current Ix of the smart speaker, where Vs denotes the source voltage of the grid, Ii is
the input current of each branch, Rs is the resistance of the common wire through which
all currents flow, Rx is the resistance of the wire connected to the smart speaker, and Ra
is the internal resistance of the smart speaker. Each branch has its line resistance, and we
have labeled only the line resistance Rx used in Equation (1). The relationship between the
input current of the smart speaker, the source voltage, and the current of each branch is as
follows:

Vs = (
n

∑
i=0

Ii + Ix)Rs + Ix(Ra + Rx)

Ix =
Vs

Rs + Rx + Ra
− Rs

Rs + Rx + Ra

n

∑
i=0

Ii

(1)

Clearly, the input current of the smart speaker Ix is influenced by the current of the
other branch Ii. As mentioned in Section 3.2, PFC signals (feedback current) are part of Ii.
When the input current of the smart speaker Ix is influenced by Ii, it is influenced by the
PFC signals generated by other branches.
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Figure 5. Illustration of the household grid.

3.4. Transmitted PFC Signals Can Drive the Power Supply to Generate Sounds

This section explains how Ix, which contains the PFC signals, causes the power supply
to emit sound. A typical power supply contains multiple capacitors and inductors inside.
When current flows through the power supply, these capacitors and inductors generate
sound signals under the action of the current. For example, Figure 6 shows a typical
inductor, which consists of a magnetic core and a coil wound on it.

A changing current produces a changing magnetic field, and the core is repeatedly
stretched in the direction of magnetization to produce sound, a phenomenon known as
magnetostriction [46]. Figure 7 shows a capacitor. When a high-frequency current acts on
the capacitor, the capacitor deforms. This phenomenon is called the inverse piezoelectric
effect. The deformation of the capacitor acts on the circuit board to produce sound. In
a preliminary study, we also observed that the sound generated by the power supply is
consistent with the PFC signals in terms of features (see Section 4.3).

Alternating 
Current

Magnetic Core

Coil

Mother Board

Figure 6. Magnetostriction of a magnetic core under the influence of alternating current.

Figure 7. A capacitor exhibits an inverse piezoelectric effect due to the electric field.

4. Preliminary Study

In Section 3, we showed that e-bike charging can generate a special PFC current that
can drive the power supply in the grid to generate sound from a distance. Before we can
use this principle for e-bike charging health monitoring, we need to answer the following
questions: (1) Are the PFC currents unique for each e-bike and the different states of e-bikes?
(2) Are the PFC currents stable over time? (3) Can the transmitted PFC currents generate
sounds of the same frequency?

We conducted a preliminary study in two rooms (rooms A and B; see Figure 1) under
a household grid to answer these questions. In Room A, we connected different appliances
or e-bikes to the grid (listed in Tables 1 and 2). In Room B (see Figure 11), we connected a
Tmall smart speaker to the grid and used a sound card with a maximum sampling rate of
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192 kHz to receive the sound signal from the smart speaker’s power supply. At the same
time, we captured the PFC signal (current) with an ACS712 current sensor and Analog
Discovery2 (AD2).

Table 1. E-bikes used in the preliminary study (marked with *) and the evaluation data.

Brand Model Battery Type Power Rating (W)

YADEA (a) * DE2 Lithium 180
YADEA (b) TDT1241Z Lithium 160

AIMA * D260TZA-L4812 Lithium 110
NIU * UQis Lithium 160

FOREVER * Sport Lead-acid 120
XDAO * XiaoK Lead-acid 160
PALLA K11 Lithium 210
SUNRA TDT4960Z Lead-acid 110
AiSUN LOLLIPOP Lead-acid 120
Lvliang TDR183Z Lead-acid 175

Table 2. Appliances used in the preliminary study and evaluation.

Type Brand-Number (Power Rating)

Light Xiaomi-2 (9 W, 9 W); PHILIPS-1 (18 W)
Projector Sony-1 (225 W)
Monitor PHILIPS-1 (21 W); Dell-1 (50 W)
Laptop Hp-2 (65 W, 90 W); Lenovo-1 (65 W)

Phone charger Huawei-1 (40 W); Xiaomi-2 (33 W, 35 W)

4.1. Uniqueness

To answer Question 1, we used AD2 to collect multiple data segments at the different
charging stages of each e-bike with each lasting for 20 s. Similarly, we also collected
the PFC signals of the remaining 12 electrical appliances. We performed 2D correlation
analysis on the spectrograms of these data [47]. Figure 8 shows the cumulative distribution
function (CDF) of the correlations. The correlations between different e-bikes and different
appliances do not exceed 0.69, and the correlations between different charging stages of
the same e-bike do not exceed 0.77. The experiments demonstrated that the differences
between PFC signals are sufficient to distinguish between different appliances and e-bike
charging stages.

0 0.2 0.4 0.6 0.8
Correlations

0

0.2

0.4

0.6

0.8

1

C
D

F

diff appliances & e-bikes
diff charging states

Figure 8. Blue is the CDF of the 2D correlation between different appliances and e-bikes (including
different charging stages). Orange is the CDF of the 2D correlation between different charging states
of the same e-bike.

4.2. Stability

To answer Question 2, for each e-bike, a set of data was collected every 5 days using
AD2 with each set containing multiple data segments from three charging stages and each
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segment lasting 20 s, and we collected these data over 1 month. We then performed a 2D
correlation analysis between the same charging states of the same charger by using the first
set of data as a benchmark. We averaged the correlations for the different charging stages
of the same e-bike and averaged the correlations for other appliances. Figure 9 shows that
the correlation between PFC signals can always be maintained above 0.94 within a month,
which suggests that the PFC signals remained stable over time.

2 3 4 5 6

Rounds

0.94

0.96

0.98

C
or

re
la

tio
n

YADEA(a) AIMA NIU
FOREVER XDAO Other appliance

Figure 9. 2D correlation of five rounds over a period of 30 days.

4.3. Consistency

To answer question 3, in Room A, we connected an HP laptop to the grid. Then, in
Room B, we simultaneously measured the sound signals generated by the power supply
and the PFC signal (current). Figure 10 shows the power spectrum of the current and the
corresponding sound signal, both of which have identical frequency spikes at 21.28 kHz.
To better present the information in the power spectrum, we took the logarithm of the
vertical axis in conjunction with the definition of decibels (NdB = 10 lg(Px/P0), and P0 is
the custom reference value); therefore, the vertical axis unit in Figure 10 is dB. This shows
that the sound signal generated by the power supply is characteristically consistent with
the corresponding current signal.

Figure 10. Spectrum of the simultaneously collected current and sound signals.

Figure 11. Image of the data collection equipment.
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5. System Design

As shown in Figure 12, the proposed system comprises two phases: the registration
phase and health-monitoring phase.

Each e-bike needs to be registered individually. During the registration phase, the
e-bike must undergo a complete charging cycle, during which the system continuously
collects the sound signals generated by the power supply. As the background sound can be
collected before the e-bike is connected to power in the registration phase, the registration
phase can use spectral subtraction to weaken the background noise and the interference
from other appliances’ PFC signals.

Combined with VMD and periodicity detection, we can obtain a signal containing
only information about the e-bike charging stage. This signal will be used to generate
the charging stage template. The system compares the template information obtained
at different times to determine the current charging stage and calculates the duration of
each charging stage, thereby, generating the normal charging pattern of the corresponding
e-bike. The system can register different models of e-bikes on the market in advance for
users’ convenience.

In the health-monitoring phase, the system first preprocesses the data to remove
background noise and then obtains a sound signal that may contain the PFC features of
multiple appliances and e-bikes. By matching the template information obtained in the
registration phase, the system can determine which e-bikes are charging in the grid and
what charging stage they are in. The system can obtain the duration of the constant current
and constant voltage stages from the charging stage information collected many times.
After comparing this with the normal charging mode, the system can judge whether these
two stages’ durations are normal in order to analyze the e-bike’s charging health.

In the following sections, we will present these phases in detail.

Registration Phase

Health Monitoring Phase 

Template Matching

Preprocessing
Spectral Subtraction

VMD

Periodicity Detection

E-bike Charging Stage 
Template Generation

Preprocessing
VMD

Periodicity Detection

Charging Health 
Analysis

Normal Charging
Pattern Generation

Charging
E-bike

Sound
Recorder

Figure 12. System overview of SingMonitor.

6. Methodology

In this section, we present the methods used by the system.

6.1. The Registration Phase
6.1.1. Spectral Subtraction

To generate a better e-bike charging stage template, our first step is to improve the
signal-to-noise ratio. As the noise in the system changes relatively slowly and the PFC
signals generated by other appliances can remain stable, it is well suited for processing the
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signal by spectral subtraction [48] to obtain cleaner template information. The sound signal
Sr received by the microphone can be expressed as follows:

Sr = Sp f c(ω0) + Nbg+op f c (2)

where Sp f c(ω0) refers to the sound signal generated by the influence of the e-bike PFC
signal, and ω0 is the central frequency of the signal. Nbg+op f c is the background noise
(including the ambient noise, the internal noise of the power supply, and the sound card’s
noise floor) and interference from other appliances’ PFC signals. Nbg+op f c is time-invariant
and follows a specific distribution. Thus, we can attenuate Nbg+op f c with spectral subtrac-
tion:

Ŝp f c(ω0) = F−1[[|Sr| − E[|Nbg+op f c|]]ejθ ] = Sp f c(ω0) + ϵ (3)

where E[|Nbg+op f c|] represents the estimated background noise and interference, F−1 is the
inverse fast-Fourier transform, θ is the original phase, and ϵ is the estimation error.

6.1.2. Variational Mode Decomposition

We further processed the signal to extract PFC features. As the center frequency of
the PFC signals can remain stable, we can use variational mode decomposition (VMD) to
further process the data. VMD can decompose the sound signal into several narrow band
components, i.e., intrinsic mode functions (IMFs).

We use VMD to divide Ŝp f c(ω0) into k narrow band signals (denoted by uk(ω0)),
and ωk is an estimate of the corresponding signal center frequency. We calculated the
penalty term after converting the narrow-band signal from the pass band to the base band.
Therefore, the optimization objective in the frequency domain is as follows:

min
uk(ω0)

{||∑
k

uk(ω0)− Ŝp f c(ω0)||22 + α ∑
k
||j(ω0 − ωk)uk(ω0)||22}

s.t. ∑
k

uk(ω0) = Ŝp f c(ω0)
(4)

where α is the penalty factor. To guarantee fidelity when reconstructing the sound signal,
we added a restriction: ∑k uk(ω0) = Ŝp f c(ω0). The optimal solution can be obtained
using the Lagrange multiplier, which is followed by the alternating direction method of
multipliers algorithm to locate the saddle point [49].

6.1.3. Periodicity Detection

After VMD, the received sound signals were decomposed into several IMFs; however,
we need to remove the IMF associated with background noise. We noticed that the back-
ground noise is an aperiodic random signal; however, the PFC feature is periodic, which
allows us to further reduce the noise using periodicity detection.

To determine the periodicity of IMFs, we first calculated the upper envelope of each
IMF and then derived the corresponding autocorrelation coefficient. Then, we divided each
IMF into segments, where the autocorrelation coefficient’s peak determines each segment’s
starting point. The length of each segment should exceed the fundamental period of the
corresponding IMF, which we set empirically to 0.05 s. Finally, we computed the Pearson
correlation coefficient (PCC) between segments, and we considered an IMF as periodic
when its average PCC reached a set threshold.

6.1.4. Template Generation

After preprocessing, we obtained clean sound signals. For each charging stage k of
the e-bike l, the corresponding processed sound signal is denoted as signal Skl . We used
the short-time Fourier transform (STFT) with a Hanning window (4096 points) with a
shifting interval of 441 points. For window m, the corresponding spectrogram is denoted
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as S′
kl,m. We then generated a template for real-time traces to match with. The process can

be expressed as follows:

Tkl =
1
M

M

∑
m=1

(S′
kl,m) (5)

where Tkl is the generated template and M is the number of windows. In this paper, the
time length M of the templates is set to 200 frames. The templates are then preserved for
matching the real-time collected sounds.

6.1.5. Normal Charging Pattern Generation

The system records when the templates are generated and compares the templates
obtained at different times to obtain the duration of each charging stage (SingMonitor is
mainly concerned with the duration of the constant current and constant voltage stage). The
system uses the above information to build the normal charging mode of the corresponding
e-bike, which will be used for the charging health analysis in the health-monitoring phase.

6.2. The Health-Monitoring Phase

In the registration phase, we obtained templates for different charging stages of
various e-bikes under laboratory conditions and built the normal charging pattern of
the corresponding e-bike. In this section, we introduce the preprocessing of sound data
collected by the user, the template-matching method, and how to use the normal charging
pattern to judge the charging health.

6.2.1. Preprocessing

As in the registration phase, the sound data captured by the user also contains noise
and, therefore, needs to be processed for noise reduction. However, unlike the registration
phase, we do not require users to collect background sounds in advance. Therefore, only
the VMD and periodicity detection will be used for noise reduction in the registration
phase. S′

r represents the sound signal captured directly by the user, and the corresponding
sound signal after preprocessing is Ŝp f c(ω0)

′.

6.2.2. Template Matching

In developing this metric, we considered two factors in combination.
The center frequency similarity: The center frequency varies significantly between

different appliances and e-bikes (as mentioned in Section 3); Therefore, we developed the
measure D1. This considers the difference between the center frequencies of the target and
the template as measured using the Euclidean distance. First, since different frequency
components in the template have different impacts on the matching, we constructed a
weight for each frequency component, denoted as ω1. The weight function ω1 is defined
as:

ω1 = FD( f )Tkl( f ) (6)

where Tkl is the template and FD is a filter function. Then, the distance can be determined
by integrating the local distance γi in the time-frequency domain, weighted by ω1, which
can be expressed as:

D1i =
10

∑
t=1

2048

∑
f=1

ω1γi(t, f ) (7)

The frequency width similarity: During the experiments, we found that the similarity
of the central frequency was not the only factor that influenced the template-matching
procedure. For example, the difference between the different charging states of the same
e-bike was more clear in the bandwidth. To measure this metric, similarly, we developed
the evaluation metric D2, which is expressed as follows:
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D2i =
10

∑
t=1

2048

∑
f=1

ω2widthi(t, f ) (8)

where widthi is the frequency width of each frequency band, defined as the frequency
components that are larger than 0.2 × fmax(i), and fmax(i) is the max strength of the center
frequency of this frequency band. Ten frames (a frame is the window size in the STFT) of
data are used for template matching.

We then combined these two metrics to measure the similarity of the template and the
actually acquired signal:

Di = D1i + λD2i (9)

where λ is the penalty factor, which ranges from 0 to 1. λ is tuned in the registration phase
and applied in the monitoring phase.

6.2.3. Charging Health Analysis

When the system starts, the duration of all charging states is set to 0. The system
collects sounds at time interval ∆T, obtains which e-bikes are charging and their charging
stages by template matching, and then adds ∆T to the duration of the corresponding
charging stage. If a charging state has not been detected for a long time, its duration is reset
to 0.

The system compares the duration of the constant current and constant voltage stage
with the normal charging pattern of the corresponding e-bike. Once the duration of the
constant current and constant voltage phase significantly exceeds the duration in the
normal charging pattern (in the actual experiment, the threshold was set to 30%), the
system considers that there is a fault with the e-bike battery or charger and provides a
warning about its charging health. The system will use the data measured during the
health-monitoring phase to adjust the threshold of the corresponding e-bike.

7. Evaluation
7.1. Experiment Setup
7.1.1. Experiment Setup

As shown in Figure 1, we conducted experiments in two rooms under a distribution
box. The distance between the sockets in the two rooms was 9 m. At the receiving end
(room B), we used the Tmall smart speaker’s power supply to generate the sound signal.
Since the smart speaker’s internal data is unavailable, we chose a sound card (connected to
an electret condenser microphone) with a maximum sampling rate of 192 kHz to capture the
sound signal (see Figure 11). At the PFC signals transmitting side (room A), we used a total
of 10 e-bikes and 12 other appliances for the experiment (see Tables 1 and 2). Furthermore,
we used an ACS712 current sensor to obtain the charging stage of the e-bike and used this
as the ground truth.

7.1.2. Dataset Preparation

A total of three datasets were generated in the experiments for the micro benchmark,
overall evaluation, and robustness evaluation.

Registration Dataset: For the register phase, we used 10 e-bikes in the experiments.
We conducted multiple 30 s data collections for each charging stage of each e-bike, with a
total data length of 90 min, of which we chose the first 20 s to generate templates and the
last 10 s to perform template matching and to obtain a micro-benchmark of the system.

Overall Dataset: For the health-monitoring phase, we conducted a real-world exper-
iment by randomly connecting multiple e-bikes and other appliances in Room A (up to
three e-bikes and four other appliances working simultaneously). To reduce the system
complexity, we collected 0.5 s of sounds every 15 min (as mentioned in Section 6.2.2, 0.25 s
of data was enough for the system to perform a template match). We experimented for 25
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days, and the total duration of the data collected during the experiment was 381 s. These
data were used to evaluate the overall system performance (see Section 7.3).

Robustness Dataset: Similarly, to evaluate the robustness of SingMonitor (see Section 7.4),
five e-bikes were used in the experiment (e-bikes marked with ∗ in Table 1). We exper-
imented on each e-bike under different influencing factors and averaged the results to
measure the system’s performance. The corresponding total data length was 620 s.

7.1.3. Evaluation Metric

As mentioned in Section 3.1, SingMonitor mainly uses the constant current/voltage
stage duration to determine whether the e-bike is in a healthy charging status. Therefore,
we mainly evaluated the accuracy of the system for classifying the different charging stages
of different e-bikes. The F1i score was used to assess each class’s performance, and the
micro F1 score was used to measure the overall system performance. F1i can be computed
as follows:

F1i =
2 · pi · ri
pi + ri

(10)

where pi and ri are the precision and recall for a particular charging state of an e-bike,
respectively. Essentially, the F1i score and micro F1 score are positively correlated with
the system’s classification performance. In addition, we evaluated the overall system
performance in Section 7.3 by counting the duration of the different charging phases.

7.2. Micro-Benchmark

This section evaluates how different parameters affected the SingMonitor performance.
The registration dataset was used for evaluation.

7.2.1. STFT Window Size

The window size in STFT determines the resolution of the spectrogram. The time
resolution of the spectrogram decreases as the window size increases, while the frequency
resolution does the opposite. The time-frequency resolution affects the template generation
and matching, thereby, affecting the system performance. We experimented to select the
best window size. Figure 13a shows the micro F1 score for different window sizes, and we
finally choose 4096 (micro F1 score of 0.97) as the window size for STFT.

512 1024 2048 4096 8192

Window Size

0.7

0.75

0.8

0.85

0.9

0.95

1

m
ic

ro
 F

1 
sc

or
e

(a) Window size.

0.37 0.38 0.39 0.4 0.41 0.42 0.43 0.44 0.45

Penalty factor

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

m
ic

ro
 F

1 
sc

or
e

(b) Penalty factor.

Wavelet
EMD

VMD
SVM

Perceptro
n

Resnet34

Template

Method

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

m
ic

ro
 F

1 
sc

or
e

Registration dataset Overall dataset

(c) Different methods.

Figure 13. Performance of SingMonitor with different micro-benchmarks.

7.2.2. Penalty Factor λ

The penalty factor (see Section 6.2.2) is used to adjust the weighting of the central
frequency similarity to the frequency width similarity. We experimented to determine
the size of this value. Figure 13b shows that the system performed best when the penalty
factor was 0.41 (the micro F1 score was 0.97), so we used 0.41 as the penalty factor in all
subsequent experiments.
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7.2.3. Different Methods

Different noise reduction schemes and different classification methods will have an
impact on the system performance. We changed the preprocessing method to wavelet
transform and empirical mode decomposition (EMD) combing wavelet threshold, which we
tested using the overall dataset. Figure 13c shows that the variational mode decomposition
(VMD) method performed best. We also used SVM, multi-layer perceptron, and resnet-34
models to classify e-bikes and their charging stages. The registration dataset was used to
train and test these models, and the overall dataset was used for testing only.

As shown in Figure 13c, in the registration dataset, all of these models performed well.
However, because the overall dataset was interfered with by the PFC signals generated
by other appliances, the performance of these models on the overall dataset degraded to
varying degrees. The template matching was designed based on the characteristic that
the center frequency and bandwidth of PFC signals generated by different appliances and
e-bikes’ different charging stages are different. Thus, it is more resistant to interference and
performs more stably.

7.3. Overall Performance

In this section, we evaluate the overall performance of SingMonitor. The overall dataset
was used for evaluation.

7.3.1. Template Matching Evaluation

As mentioned in the evaluation procedure, during the experiment, the system collected
a 0.5 s sound signal every 15 min and performed template matching to determine which
e-bikes were charging in the grid and what charging stage they were in. Figure 14a shows
that the F1 score reached above 0.94 for different charging stages of different e-bikes. This
proves that the system can achieve high performance in a complex environment with
multiple e-bikes and other appliances.

7.3.2. Duration of Charging Stages

The system calculates the durations of different charging stages and compares them
with the normal charging pattern of the corresponding e-bike to judge the charging health.
During the experiments, the duration of the constant current and constant voltage stages
was within the normal range for all 10 e-bikes, and the system judged the charging health of
these e-bikes to be fine. As shown in Figure 14b, we cumulated the duration of the different
phases of each e-bikes and compared with the real time data (the system does not care
about the duration of the float stage; however, it can also be calculated). The error between
the system calculation time and the real time did not exceed 9%. The time calculated by the
system is high compared to the real time because the system’s misjudgment of the charging
stage tends to increase the charging time.
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Figure 14. The overall performance of SingMonitor.
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7.4. Robustness

In this section, we evaluate the robustness of SingMonitor under different influences.
The robustness dataset was used for evaluation.

7.4.1. Impact of the Number of Appliances

We gradually increased the number of other types of appliances in the grid (1∼10) to
evaluate the system. Figure 15a shows that, as the number of appliances increased, the
system’s performance decreased. This is because the increase in the number of appliances
made the PFC signal generated by e-bikes more susceptible to interference in the frequency
domain, which affects the template matching. When the number of appliances did not
exceed six, the micro F1 score was maintained above 0.9.
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Figure 15. The robust performance of SingMonitor.

7.4.2. Impact of Distance

We increased the propagation distance of the PFC signals by extending the wires. As
shown in Figure 15b, the system performance decreased with increasing distance because
the strength of the PFC signal gradually attenuated as the propagation distance increased.
However, the micro F1 score was still maintained above 0.91 in the range of 16 m.

7.4.3. Impacts of the Sound Sampling Rate and Environmental Noise

Aliasing errors occur when the sampling rate does not meet the Nyquist sampling
theorem. We varied the sample rate (192, 96, and 48 kHz) of the sound card and conducted
experiments with different environmental noises (quiet, talking, and playing music) to
verify the effects of the sample rate and noise on the system. Figure 15c shows that the
system’s performance deteriorated as the sampling rate decreased and the noise increased.
Regarding the aliasing effect, we can extract distorted PFC features at low sampling rates,
so the system can still work at low sampling rates (the micro F1 score at 48 kHz was 0.89).
At low sampling rates, the effect of noise on the system was more pronounced because the
noise could not be completely removed, and its frequency was lower, which makes it more
likely to interfere with the distorted PFC features.

8. Discussion

SingMonitor is limited by several issues. First, the microphones of mobile devices, such
as smartphones, often use low-pass filtering, i.e., an anti-alias filter (AAF), before sampling
the audio signals. Due to the AAF, mobile devices may not be able to capture clear PFC
frequencies, thus, affecting SingMonitor’s performance. However, existing studies have
attempted to recover the signals that underwent AAF processing using methods such as
non-linearity [50], and we will subsequently test these methods.

Second, the center frequency of certain electrical appliances is close to that of e-bikes,
which may affect the monitoring of e-bikes when these devices are in use. In particular,
some appliances (such as air conditioners, laundry machines, and refrigerators) change
their frequency when operating, causing the appliance noise removal method based on
spectral subtraction to fail and reducing the system’s performance.
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However, these devices are few in daily life. In addition, we can also use other methods
(e.g., low-frequency sound) and the sound of the user using the appliance as compensation
for classification, or we can collect and analyze their signal characteristics in advance to
remove their interference on the system.

9. Conclusions

To the best of our knowledge, we are the first to use sounds emitted by the power
supply to monitor e-bike charging health. Compared with existing fire warning systems
or other e-bike-monitoring systems, SingMonitor uses power supplies everywhere for
monitoring, which can be implemented on mobile devices and can achieve long-range
monitoring.

A noise-cancellation scheme combining VMD, periodicity detection, and spectral
subtraction was used to cancel background noise and the interference from other appliances.
We proposed a template-matching-based scheme and designed a new distance metric to
distinguish different charging stages. Experiments showed that SingMonitor achieved an
F1 score of 0.94 in identifying 10 e-bike charging stages, with a detection distance of 9 m+.
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